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1 Introduction

This is a casual introduction to the idea of “the fundamental group” and its applications. Not only will
this help explain the name of my favorite Discord server for Stanford math students, but it will also help
illustrate why algebra (group theory, category theory, etc.) is so important for topology.

Prerequisites: Basic knowledge about groups.

2 The Fundamental Group

Formally, a path in a topological space X is a continuous map γ : [0, 1]→ X. The endpoints of γ are γ(0)
and γ(1). A path γ is called a loop if its endpoints are equal; that is, if γ(0) = γ(1).

Now, there exist some important operations on paths. For example, suppose γ is a path with endpoints x0
and x1, and δ is a path with endpoints x1 and x2. Then γ · δ, the product of γ and δ, is a path from x0
and x1 that “does γ and then does δ”. Formally, we define

(γ · δ)(t) =

{
γ(2t) 0 ≤ t ≤ 1

2

δ(2t− 1) 1
2 ≤ t ≤ 1.

Another important operation is called the reverse, and takes just one path. The reverse of γ, denoted γ is
the path that “does γ backwards”. Formally, γ(t) = γ(1− t). If you want, try checking that both γ · δ and
γ are continuous. Following are some visual examples.
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In topology, often spaces are considered the same if one can be continuously deformed into the other and
vice-versa. The same holds for paths: two paths γ and δ with the same endpoints are path-homotopic if
γ can be continuously deformed into δ while fixing the endpoints.

Formally, a path homotopy from γ to δ is a continuous map F : [0, 1]× [0, 1]→ X such that

1. F (x, 0) = γ(x) and F (x, 1) = δ(x) for all x,

2. γ(0) = F (0, t) = δ(0) and γ(1) = F (1, t) = δ(1) for all t.

We say that γ and δ are path-homotopic if there exists a path homotopy between them.

Now, the formal definition of path homotopies can be a bit intimidating, so let’s break it down a bit. What’s
actually going on is that we have a family of paths ft, given by ft(x) = F (x, t), for all t ∈ [0, 1]. This family
of paths varies continuously (since F is continuous in both x and t) between f0 = γ and f1 = δ (this is the
first condition) and shares the same endpoints for any t (this is the second condition).

Here are some examples of valid and invalid path-homotopies.

Suppose we fix points x0, x1 ∈ X. Then path-homotopies form an equivalence relation on the set of all paths
between x0 and x1; that is, γ ∼ δ are equivalent if there exists a path-homotopy from γ to δ. Check yourself
that this truly is an equivalence relation: in particular, transitivity raises an interesting problem. Under this
relation, the equivalence class of γ is called the path-homotopy class of γ and is denoted [γ].

Now, we’re ready to define the fundamental group. The fundamental group of X at x0, denoted π1(X,x0),
is the set of all homotopy classes of loops starting and ending at x0. The group operation is given by the
product ·, the identity is the constant map, and the inverse of a loop γ is γ. I leave it to you to check that
π1(X,x0) satisfies the group axioms; when you do, remember the elements are not paths, but classes of paths.

Following are example computations of the fundamental group (the proofs can be found in Hatcher’s Algebraic
Topology, available freely online here). The computations are a lot of work, so we don’t do them here.
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Finally, let’s explore how the fundamental group π1 is a functor . Functors are an idea from category theory,
but the idea is simple enough that no prior experience with category theory is necessary. Roughly speaking,
functors carry us from one “world of math” to another “world of math”. Notice that I do not simply say
that functors transform one type of mathematical object into another type of mathematical object; functors
do more than that. The true power of functors come from the fact that they also transform maps between
one type of object into maps between another type of object.

Let’s explore what it means for the fundamental group to be a functor in more detail; this will help us
understand the concept of a functor more generally. Now, the type of object that π1 “accepts” is called a
based topological space. No, not that kind of “based”; a based topological space is just a pair (X,x0),
where x0 is a point in X which we call the basepoint . For us, it’s the point which all our loops begin and
end at. The type of object which π1 “returns” is just an ordinary group π1(X,x0).

Now, let’s consider how the fundamental group can transform maps. Suppose that φ : (X,x0) → (Y, y0) is
a morphism of based topological spaces (this is just a fancy way to say that φ : X → Y is continuous map
such that φ(x0) = y0). Then φ induces a map π1(φ) : π1(X,x0) → π1(Y, y0) given by [γ] 7→ [φ ◦ γ]. Let us
consider a visual example to illustrate this concept:

Here’s the special thing: this map π1(φ) isn’t just a function, but a group homomorphism. That is, π1(φ)
transforms morphisms of based topological spaces to morphisms of groups! This transformation of mor-
phisms also has some special properties: π1(φ ◦ ψ) = π1(φ) ◦ π1(ψ) (that is, π1 respects composition) and
π1(idX) = idπ1(X,x0) (π1 takes the identity map to the identity map). Try checking this yourself!
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These properties might seem innocent, but they’re incredibly powerful, and to show how, we’re going to
prove Brouwer’s Fixed Point Theorem using the fundamental group.

Theorem 1 (Brouwer’s Fixed Point Theorem). Any continuous map φ from the unit disk D2 to itself has
a fixed point; that is, there exists some x ∈ D2 such that φ(x) = x.

Proof. Assume that the theorem is false; that is, for the sake of contradiction take a map φ : D2 → D2 such
that φ(x) 6= x for all x. Then, we may define a continuous map φ̃ : D2 → S1 given by sending x to the point

on the boundary of D2 on the ray starting at φ(x) and going through x. Visually, φ̃ is defined as so:

Notice that φ̃(x) = x for every x ∈ S1. That is, φ̃(x) fixes the boundary circle S1. I claim that this gives us
a contradiction. To see why, let ι : S1 → D2 be the natural embedding map (taking the boundary circle to

itself within the unit disk). Then, φ̃ ◦ ι is the identity map on S1. In category theory, we visually represent
this relationship with a “commutative diagram”, as so:

S1 D2 S1ι

idS1

φ̃

But consider what happens if we apply our functor π1 to this diagram. As mentioned before, π1(D2) is the
trivial group 0, whereas π1(S1) is isomorphic to Z. Hence we have a commutative diagram as so:

Z 0 Zπ1(ι)

idZ

π1(φ̃)

But this is impossible! How can a homomorphism from Z onto the trivial group back to Z be the identity;
clearly, it cannot be either injective or surjective (since all of Z is mapped onto the only element in the trivial
group, which is mapped to the identity element in Z). Hence we have the desired contradiction.

The applications of Brouwer’s Fixed-Point Theorem are numerous and beautiful. For example, it implies
that if one places any map within the bounds of an identical but larger map, there will be at least one spot
which is the same place on both maps, however the smaller map is oriented. More interestingly, it can be
used to show that the game of Hex always a winner (see this article). This connection between topology and
game theory is surprising and beautiful.
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