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1 Motivation

This post seeks to answer a common question asked by students of abstract algebra: “why?” The abstraction
may seem unncessary and obtuse. However, by giving an application to another, more naturally aesthetic
area of math, we can help illuminate the power of this abstraction.

These notes are inspired by Math 154, taught by Brian Conrad, at Stanford.

2 Essential Ring Theory

In this section, we will review three important conditions on the structure of rings. These are likely familiar
to someone with a course in algebra, but it’s important to be familiar with the details to understand why
these are such helpful notions. In these notes, all rings are commutative with identity.

We assume the knowledge of the following concepts from a first course on algebra: ring, subring, ideal,
quotient, and unit. In these notes, R always denotes a ring and I always denotes an ideal.

2.1 Unique Factorization

Definition 1 (Irreducible). A nonzero non-unit element r ∈ R is called irreducible if there is no way to
write r = st with non-units s and t.

For example, 7 is irreducible in the ring of integers Z.

Definition 2 (Division). We say r ∈ R divides t (and write r | t) if there exists s ∈ R such that rs = t.
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For example, 7 divides 14 in the ring of integers Z, because 7 · 2 = 14.

Definition 3 (Prime). A nonzero non-unit element p ∈ R is called prime if, whenever p | ab, p | a or p | b.

For example, 7 is a prime element in the ring of integers Z.

In fact, with some investigation, one might discover that, in the integers, the prime elements and the
irreducible elements are the same. Indeed, we will prove that Z is a unique factorization domain (UFD),
which implies that the prime and irreducible elements are the same. However, unfortunately, this is not true
in general. Let’s take a look at an example.

Proposition 1. Not all irreducible elements are prime in the ring Z[
√
−5] = {a+ b

√
−5 | a, b ∈ Z}.

Proof. Notice that 2 · 3 = 6, so 2 divides 6. To see why 2 is irreducible, consider a map which describes the
“size” of an element in Z[

√
−5], called the norm map:

N(a+ b
√
−5) = a2 + 5b2.

It is not difficult to check via computation that N(αβ) = N(α)N(β) for any α, β ∈ Z[
√
−5]. Therefore, if

αβ = 2, then N(α)N(β) = N(αβ) = N(2) = 4. Either N(α) and N(β) are both 2, or one of N(α) and N(β)
is 1, and the other is 4. Yet it is not difficult to check, from the formula, that there are no elements of norm
2. Therefore one of N(α) and N(β) is 1. Yet the only elements with norm 1 are 1 and −1, which are both
plainly units. Therefore, 2 cannot be written as the product of two non-units, so it is irreducible.

On the other hand, 6 is equal to (1 +
√
−5)(1−

√
−5). If 2 were prime, then it would divide at least one of

these two elements. Yet it does not divide either, so it isn’t prime. Thus, 2 is irreducible and not prime.

Notice that the reason why this failed had something to do with the fact that we could write 6 as the product
of irreducible elements in two different ways. Yet in Z, each number can be uniquely expressed as the product
of primes; we call this unique factorization. Therefore, we make the following definition.

Definition 4 (Unique Factorization Domain). Let R be a ring. We say R is a unique factorization domain
(UFD) if for any r ∈ R we can write r as the product of irreducible elements π1, . . . , πn and a unit u, as so:

r = uπ1 · · ·πn.

We also require this expression to be unique: if r = vρ1 · · · ρm is the product of a unit v and irreducible
elements ρ1, . . . , ρm, m = n and can rearrange the irreducible elements ρ1, . . . , ρn such that πi and ρi are
associate (that is, πi = uiρi for a unit ui) for each i.

Proposition 2. In a UFD, every prime element is irreducible and vice versa.

Proof. We’ll leave this as an exercise, since it’s not too hard.

We’ll see some examples later. In particular, we’ll prove Z is a unique factorization domain, as we guessed.

2.2 Principal Ideals

Definition 5 (Principal Ideals). Suppose I is an ideal of a ring R. Then, I is called principal if there exists
a element r ∈ R such that I = (r); that is, I is the set of multiples of r.

Definition 6 (Principal Ideal Domain). A ring R is called a principal ideal domain (PID) if every ideal of
R is a principal ideal.

Why might we care about principal ideal domains? The following theorem provides one example.

Theorem 3. Every principal ideal domain is a unique factorization domain.

Proof. The proof of this theorem is not particularly illuminating, and it is quite laborious. Therefore, I cite
this reference (clickable link) which explains the result in detail.
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2.3 Euclidean Domains

Definition 7 (Euclidean Domain). A ring R is called a Euclidean domain if there exists a “norm map”
N : R→ Z≥0 that satisfies the following requirements:

1. N(r) = 0 if and only if r = 0.

2. For any element a ∈ R and nonzero b ∈ R, there exists q, r ∈ R such that N(r) < N(b)

a = qb+ r.

You might have an idea of why we care about Euclidean domains from the previous section.

Theorem 4. Any Euclidean domain is a principal ideal domain.

Proof. Consider an ideal I C R. Let b ∈ I be the nonzero element with the smallest norm of any nonzero
element of I. I claim that (b) = I. To see why, take any a ∈ I. Then there are q, r ∈ R such that

a = qb+ r.

but N(r) < N(b). Notice that qb ∈ I, so r = a− qb ∈ I. But this implies that r = 0, since b is has minimal
norm of all nonzero elements of I. Therefore, a is a multiple of b, so (b) contains I. Since clearly I contains
(b), since it contains b, we indeed have I = (b), so I is principal, as desired.

In particular, since Z is a Euclidean domain (look up, for example, the Euclidean algorithm), it is a principal
ideal domain and a unique factorization domain. Here’s another example:

Problem 1. Let F be a field, and F[X] be the ring of polynomials over said field. For each polynomial
f , let deg f be the degree of f . By convention, the zero polynomial has degree −∞. Prove that F[X] is a
Euclidean domain with norm N(f) = 2− deg(f). [Hint: the constant chosen – in this case 2 – doesn’t matter.]

3 The Gaussian Integers

Next, we’ll consider a few rings where are critical for number theory. We’ll prove that they are unique
factorization domains by finding a norm under which they are Euclidean domains.

The main ring which we are concerned with is called the Gaussian integers, and they are complex numbers
of the form a+ bi where a and b are integers. The Gaussian integers, written Z[i] (which is pronounced “Z
adjoin i”), has a close relationship to sums of squares.

3.1 Z[i] is a Euclidean Domain

Lemma 5. The norm N(x+yi) = x2 +y2 is multiplicative; that is, N(αβ) = N(α)N(β) for any α, β ∈ Z[i].

Proof. Left as an exercise in computation.

Theorem 6. Z[i] forms a Euclidean domain under the norm N(x+ yi) = x2 + y2.

Proof. Clearly, N(a) = 0 if and only if a = 0. Therefore, consider a, b ∈ Z[i] with b nonzero. Then, by
multiplying the top and bottom of a

b by the complex conjugate b, we can write

a

b
= t1 + t2i

for rational numbers t1 and t2. Let q1 and q2 be the closest integers to t1 and t2, respectively, so that q1 +q2i
is the Gaussian integer closest to t1 + t2i. Then write ε1 = t1 − q1 and ε2 = t2 − q2, so that

a

b
= t1 + t2i = (q1 + q2i) + (ε1 + ε2i).
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Abbreviate q1 + q2i by q, and ε1 + ε2i by ε. Then, a
b = q + ε becomes a = bq + bε. Define r = bε, so that

a = bq+r. Now, all we need to prove is that N(r) < N(b). To do this, notice that N(r) = N(bε) = N(b)N(ε),
so the key is to prove that N(ε) < 1.

This follows from one incredibly important fact: |ε1| ≤ 1
2 and |ε2| ≤ 1

2 . This is because any rational number
is at most a half-unit away from some integer. As a result,

N(ε) = N(ε1 + ε2i) ≤
(

1

2

)2

+

(
1

2

)2

=
1

4
+

1

4
=

1

2
< 1.

Therefore, N(r) = N(bε) = N(b)N(ε) < N(b), exactly as desired! Notice that N(b) 6= 0, because b 6= 0.

Corollary 6.1. Z[i] is a principal ideal domain and unique factorization domain.

3.2 The Power of Abstraction: Z[
√
−2]

It might seem like all of this is abstraction for abstraction’s sake, but notice that the earlier argument ports
over very well to another subring of C: Z[

√
−2] = {a+ b

√
−2 | a, b ∈ Z}. In fact,

Lemma 7. The norm N(x+y
√
−2) = x2+2y2 is multiplicative; that is, N(αβ) = N(αβ) for any α, β ∈ Z[i].

Theorem 8. Z[
√
−2] forms a Euclidean domain under the norm N(x+ y

√
−2) = x2 + 2y2.

Proof. The proof of this fact is exactly the same as for Z[i], only now computing N(ε) is slightly different:

N(ε) = N(ε1 + ε2i) ≤
(

1

2

)2

+ 2

(
1

2

)2

=
1

4
+ 2 · 1

4
=

3

4
< 1.

4 Diophantine Equations

Finally, once we’ve developed this algebra, we can begin applying it to Diophantine equations, central ob-
jects of study in number theory. Diophantine equations ask us to find integer solutions, which are often
significantly harder than finding real or complex solutions. We will grapple with a few famous examples in
the coming sections, relying on the structure of the rings studied earlier.

As for prerequisites, we will use the basics of modular arithmetic (including, for example, that Z/pZ is a
field) and two facts from elementary number theory called supplements to the law of quadratic reciprocity.
These facts have elementary proofs, and are as follows:

Lemma 9. If p is an odd prime, there exists x such that x2 ≡ −1 mod p if and only if p ≡ 1 mod 4.

Lemma 10. If p is an odd prime, there exists x such that x2 ≡ 2 mod p if and only if p ≡ 1 or 7 mod 8.

4.1 Which Integers are Sums of Squares? Ask Z[i].
This section concerns itself with discovering which positive integers n can be expressed as the sum of two
perfect squares. For example, 17 = 42 + 12 but 33 cannot be written as the sum of two perfect squares.
Following are our first two hints that Gaussian integers might be the key to the puzzle of sums of squares.

Lemma 11. A positive integer n can be expressed as the sum of two perfect squares if and only if there
exists α ∈ Z[i] with N(α) = n.

Proof. Let α = x+yi be such that N(α) = n. Then n = N(α) = x2 +y2. On the other hand, if n = x2 +y2,
then assigning α = x+ yi we have N(α) = x2 + y2 = n.

4



Lemma 12. If m and n can be expressed as the sum of two squares, then mn can be expressed as the sum
of two squares.

Proof. By Lemma 11, m = N(α) and n = N(β) for Gaussian integers α and β. But the norm is multiplicative,
somn = N(α)N(β) = N(αβ). Thus, again by Lemma 11, mn can be expressed as the sum of two squares.

Theorem 13. An odd prime p can be expressed as the sum of two squares iff −1 is a square mod p.

Proof. If p = x2 + y2, then x2 + y2 ≡ 0 mod p. Then, x2 ≡ −y2 mod p. Now, neither of x or y can be
divisible by p (since then x2 + y2 would be at least p2, which is too large), so we may divide by y2 to see(

x

y

)2

≡ −1 mod p.

On the other hand, if −1 is a square mod p, then by definition there exists n such that n2 ≡ −1 mod p. Then
n2 + 1 ≡ 0 mod p. In other words, p divides n2 + 1. Now it’s time to enter the world of Gaussian integers:

n2 + 1 = (n+ i)(n− i).

Now, p divides n2+1, so it divides (n+i)(n−i). But n+i is not a multiple of p, because if n+i = p(a+bi) =
pa+ pbi, then by comparing coefficients pb = 1, which is impossible. Similar logic implies that n− i is not a
multiple of p. But, if p divides (n+ i)(n− i) but not n+ i or n− i, it cannot be prime. Therefore, since in
every UFD, prime and irreducible elements are the same, p is not irreducible.

This means that p = αβ for some nonzero non-units α and β. But this implies p2 = N(p) = N(αβ) =
N(α)N(β). Now, the only elements of norm 1 are 1 and −1, both units, so α and β both have norm greater
than 1. Therefore, N(α) = N(β) = p, so p can be expressed as the sum of two squares by Lemma 11.

Corollary 13.1. A prime p can be expressed as the sum of two squares if and only if p = 2 or p ≡ 1 mod 4.

Proof. Clearly, if p = 2, then 12 + 12 = p. The rest follows using Lemma 9 on the above theorem.

Lemma 14. Every irreducible π ∈ Z[i] either has norm 2, p ≡ 1 mod 4 or p2 for an odd prime p.

Proof. Suppose that N(π) has prime factorization p1 · · · pm. Now, N(π) = ππ, where π is the complex
conjugate of π. Therefore, π divides p1 · · · pm. Now, π is irreducible so it is prime since Z[i] is a UFD. Thus,
π divides pi for some i. By the multiplicativity of the norm, N(π) divides N(pi) = p2i . Therefore, since
N(pi) cannot equal 1, either N(π) = pi or N(π) = p2i . Yet the former case is only possible if pi = 2 or
pi ≡ 1 mod 4, and this implies the desired result.

Theorem 15. A positive integer n can be expressed as the sum of two squares if and only if every prime of
the form p ≡ 3 mod 4 appears to an even power in the prime factorization of n.

Proof. Suppose every prime of the form p ≡ 3 mod 4 appears to an even power in the prime factorization of
n. Then, n can be written as the product of some number of 2s, primes of the form p ≡ 1 mod 4, and p2 for
p ≡ 3 mod 4. Now, each of these can be written as the sum of two squares, either by our previous theorem
or by p2 = p2 + 02. Therefore, by Lemma 12, n is the sum of two squares.

On the other hand, suppose n is the sum of two squares. Then n = N(α) for α ∈ Z[i]. Factor α into
irreducibles π1 · · ·πm, so that

n = N(α) = N(π1) · · ·N(πm).

By Lemma 14, each of these norms are either 2, a prime p ≡ 1 mod 4, or p2 for an odd prime p. But this
expression demonstrates that each prime power p ≡ 3 mod 4 can only appear in square terms; i.e., to an
even power. Hence we are done.
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4.2 Abstraction Strikes Again: Z[
√
−2] and n = x2 + 2y2

Suppose we are trying to find which positive integers can be expressed in the form x2 + 2y2. It turns out
that we can analogize all of our arguments from the previous section to this problem! In particular, instead
of working over Z[i], we work over Z[

√
−2]. I state the analogous lemmas and theorems here, and suggest

as an exercise that you adapt our previous arguments.

Lemma 16. A positive integer n can be expressed in the form x2+2y2 if and only if there exists α ∈ Z[
√
−2]

with N(α) = n.

Lemma 17. If m and n can be expressed in the form x2 + 2y2, then mn can be expressed in said form.

Theorem 18. An odd prime p can be expressed in the form x2 + 2y2 iff 2 is a square mod p.

Corollary 18.1. A prime p can be expressed in the form x2 + 2y2 if and only if p = 2 or p ≡ 1 or 7 mod 8.

Lemma 19. Every irreducible π ∈ Z[
√
−2] either has norm 2, p ≡ 1 or 7 mod 8, or p2 for an odd prime p.

Theorem 20. A positive integer n can be expressed as the sum of two squares if and only if every prime of
the form p ≡ 3, 5 mod 8 appears to an even power in the prime factorization of n.

4.3 Integer Solutions to the Elliptic Curve y2 = x3 − 2

Next, we will use Z[
√
−2] to approach another type of problem entirely: finding all integer solutions to

the elliptic curve y2 = x3 − 2. First, rearrange the curve into the form y2 + 2 = x3. Then, notice that y
cannot be even. This is because if y is even, then x3 = y2 + 2 must be even, whence x is even. But then
y2 and x3 are both 0 mod 4, which is impossible since x3 ≡ y2+2 ≡ 2 mod 4 (if y is even). Therefore, y is odd.

Recall that we have rearranged the curve into the form y2 + 2 = x3. In Z[
√
−2], this can be factored as

(y +
√
−2)(y −

√
−2) = x3.

This may seem useless, but there is an important fact at play: (y+
√
−2) and (y−

√
−2) are coprime. More

precisely, they share no non-unit factors. To see why, suppose that d is a non-unit which divides (y −
√
−2)

and (y +
√
−2). Then d divides their difference, −2

√
−2 = (

√
−2)3. Since Z[

√
−2] is a UFD, this implies

that
√
−2 divides d, and therefore that

√
−2 divides (y −

√
−2) and (y +

√
−2). But this is simply untrue:

(a+ b
√
−2)
√
−2 = −2b+ a

√
−2.

Since y cannot be even, the right-hand side cannot equal y +
√
−2 or y −

√
−2 for any choice of a or b.

Therefore, we have found a contradiction, and no non-unit divides (y +
√
−2) and (y −

√
−2).

Now, (y +
√
−2) and (y −

√
−2) are two coprime numbers which multiply to make a perfect cube. Yet, if

two coprime numbers multiply to make a perfect cube, what may we conclude about the original numbers?
Well, that they themselves are perfect cubes! Therefore, (y+

√
−2) and (y−

√
−2) are perfect cubes. From

here, it is only a matter of computation: if (a+ b
√
−2)3 = (y +

√
−2) then by expanding we have

a(a2 − 6b2) + b(3a2 − 2b2)
√
−2 = y +

√
−2.

Comparing the coefficients of
√
−2, we have b(3a2 − 2b2) = 1. There are two cases to investigate:

Case 1: b = 3a2 − 2b2 = −1.
Notice that, mod 3, the equation 3a2 − 2b2 = −1 becomes −2b2 ≡ −1 mod 3, which is equivalent to
b2 ≡ −1 mod 3. Since −1 is not a quadratic residue mod 3, this has no solutions.

Case 2: b = 3a2 − 2b2 = 1.
In this case, 3a2 = 3, whence 3a2 = 3 ⇒ a = ±1. Now it is only a matter of backtracking: again, by
comparing coefficients, a(a2− 6b2) = y, whence y = ±5. From here, it is trivial to show that if y = ±5, then
x = 3. Therefore, the only integer solutions (x, y) to the elliptic curve are (3, 5) and (3,−5).
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