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In this paper, I'm going to give two competing (and equivalent) definitions of quotients of vector spaces to
illustrate why the perspective offered by category theory is so interesting. We will begin with the standard
perspective where elements matter, and move on to the category-theoretic perspective where maps matter.

For this paper, let V and W be vector spaces (link to general definition) over a field F' (such as R or C).

1 The Elements Matter

Definition 1. Suppose T : V' — W is a linear transformation. Then the kernel of T, denoted ker T', is
{veV|T(v) =0}
The kernel of T is also called the null space of T, and it is relatively easy to prove that it is a subspace of V.
Definition 2. Suppose N is a subspace of V. Then, for any = € V, the coset of x, denoted [z] or z + N, is
{r+n|neN}

Theorem 1. Any two cosets are either disjoint or identical. More precisely, if x + N and y + N are not
disjoint, then they are equal as sets.

Proof. Suppose z € x+ N and z € y+ N. Then z = z +ny = y + ns for ny,ne € N. Yet then, for any
n € N, by the properties of subspaces n; —ny +n € N, so

y+n=xz+(n  —na+n)€x+N.
This proves that y + N C x + N, and identical reasoning proves that x + N C y + N, so they are equal. [

Definition 3. If N is a subspace of V, then the quotient space V/N is defined to be the set of cosets of N.
In particular, any element of V/N is of the form x + N for some vector z € N. To make V/N a vector space
over F', we define vector addition by

(x4+N)+(y+N)=(z+y)+ N.

We also define scalar multiplication by
c(x+ N)=cx+ N.

Problem 1. Prove that the above definitions are “well-defined” on the cosets of N. More precisely, prove
that if z + N=2'+ N and y + N = ¢’ + N, then

(x+N)+(y+N)=(@"+N)+ (¥ + N) and c(z + N) = c(z' + N).
In doing this, it may be helpful to prove and use the following fact: z+ N = 2’4+ N if and only if z — 2’ € N.

Problem 2. Suppose V is the R-vector space R* and NV is the subspace spanned by the vectors [1 1 0 0] T
and [0 0 1 1]T (under the standard basis). Find a basis for V/N and prove that V/N ~ R2.


https://mathworld.wolfram.com/VectorSpace.html

2 The Maps Matter

In this section “map” is short for “linear transformation”. Now, there is a way to define subspaces and
kernels using maps alone, but to focus on quotient spaces, we use the classical definitions of these objects.

Definition 4. Suppose N is a subspace of V. Then a quotient of V by N is a pair (Q,7) where @ is a
vector space and 7 is a surjective map V' — @ such that N C ker 7 and the following property holds:

Given any map ¢ : V — W such that N C ker ¢, there is a unique map ¢ such that
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commutes; that is, ¢ o m = ¢. This is called the universal property of quotients.

Theorem 2. Suppose N is a subspace of V. Also suppose (Q, ) and (Q', ') are two quotients of V by N.
Then there is an isomorphism ¢ : Q = Q' with com =7'.

Proof. Consider the following diagram
V" @
Q

In particular, since N C ker 7', the universal property of quotients tells us that there is a unique map
¢ : Q — Q' such that the following diagram commutes:
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By the same logic, there exists a unique map ¢’ : Q' — @ such that the following diagram commutes:

Now we simply have to prove that ¢ and ¢’ are inverses. To do this, notice that because N C kerr, the
universal property of quotients tells us that there is a unique map 7 : @ — @ such that T om = 7. Now, the
identity map idg : @ — @Q satisfies idg or = 7, but since the above diagram commutes, we also find that
(¢ 0 @) om = m too. Since T is unique, we may indeed conclude that ¢’ o ¢ = idg. By identical logic on the
uniqueness of 7/, we may conclude that ¢ o ¢/ = idg/, so indeed ¢ and ¢’ are inverses. Therefore, they are
both isomorphisms, and in particular ¢ is an isomorphism Q = Q' with ¢ow = 7', O

Corollary 2.1. Up to isomorphism, there is a unique quotient of V by N. We denote this quotient V/N.

Problem 3. Repeat Problem 2 using the “map-perspective” definition of quotients.



3 It’s All the Same (up to Isomorphism)

Theorem 3. The definition of V/N using cosets satisfies the universal property of a quotient of V by N.

Proof. Let m : V. — V/N be the map given by sending x to z + N. Clearly, this map is surjective and
kerm = N. Next, suppose that ¢ : V. — W is a linear transformation such that N C ker¢. We must
demonstrate that there is a unique linear transformation ¢ : V/N — W satisfying ¢ o m = ¢.

Now, if ¢ o m = ¢, then for any x € V, ¢(w(z)) = ¢(x), so ¢(x + N) = ¢(z). This tells us that the behavior

of ¢ is completely determined, so this is the only valid option for ¢. Thus, if we show that ¢ is indeed a
linear transformation, then it is the unique linear transformation with ¢ o ™ = ¢, as desired.

There is some nuance here: it’s not entirely obvious that our definition is well-defined. Precisely, if
z+ N = 2/ + N, how can we be sure that ¢(z) = ¢(z') so ¢(x + N) = ¢(2’ + N)? To prove this, re-
call that x + N = 2’ + N if and only if z — 2’ € N. But since N C ker ¢, this implies that ¢(x — z’) = 0.
But then, because ¢ is a linear transformation, ¢(z) — ¢(z') = 0, and indeed ¢(x) = ¢(a’).

Now that we know ¢ is well-defined, it suffices to prove that it is a linear transformation. Yet this is simple
if we recall that ¢ is a linear transformation. That is, if ¢,d € F and x,y € V, then

d(c(z + N) +d(y + N)) = d((cx + dy) + N) = d(ca + dy) = cp(x) + dd(y) = cd(z + N) + do(y + N).
Thus ¢ is linear, so we are done. O

Corollary 3.1. Both definitions of quotient spaces (classical and map-based) are isomorphic by Theorem 2.



	The Elements Matter
	The Maps Matter
	It's All the Same (up to Isomorphism)

