# What Distinguishes Category Theory? Maps vs. Elements

#### Robin Truax

#### March 17th, 2021

In this paper, I'm going to give two competing (and equivalent) definitions of *quotients of vector spaces* to illustrate why the perspective offered by category theory is so interesting. We will begin with the standard perspective where **elements** matter, and move on to the category-theoretic perspective where **maps** matter.

For this paper, let V and W be vector spaces (link to general definition) over a field F (such as  $\mathbb{R}$  or  $\mathbb{C}$ ).

#### 1 The Elements Matter

**Definition 1.** Suppose  $T: V \to W$  is a linear transformation. Then the kernel of T, denoted ker T, is

$$\{v \in V \mid T(v) = 0\}.$$

The kernel of T is also called the null space of T, and it is relatively easy to prove that it is a subspace of V.

**Definition 2.** Suppose N is a subspace of V. Then, for any  $x \in V$ , the coset of x, denoted [x] or x + N, is

$$\{x+n\mid n\in N\}.$$

**Theorem 1.** Any two cosets are either disjoint or identical. More precisely, if x + N and y + N are not disjoint, then they are equal as sets.

*Proof.* Suppose  $z \in x + N$  and  $z \in y + N$ . Then  $z = x + n_1 = y + n_2$  for  $n_1, n_2 \in N$ . Yet then, for any  $n \in N$ , by the properties of subspaces  $n_1 - n_2 + n \in N$ , so

$$y + n = x + (n_1 - n_2 + n) \in x + N.$$

This proves that  $y + N \subseteq x + N$ , and identical reasoning proves that  $x + N \subseteq y + N$ , so they are equal.  $\square$ 

**Definition 3.** If N is a subspace of V, then the quotient space V/N is defined to be the set of cosets of N. In particular, any element of V/N is of the form x + N for some vector  $x \in N$ . To make V/N a vector space over F, we define vector addition by

$$(x + N) + (y + N) = (x + y) + N.$$

We also define scalar multiplication by

$$c(x+N) = cx + N.$$

**Problem 1.** Prove that the above definitions are "well-defined" on the cosets of N. More precisely, prove that if x + N = x' + N and y + N = y' + N, then

$$(x+N)+(y+N)=(x'+N)+(y'+N)$$
 and  $c(x+N)=c(x'+N)$ .

In doing this, it may be helpful to prove and use the following fact: x + N = x' + N if and only if  $x - x' \in N$ .

**Problem 2.** Suppose V is the  $\mathbb{R}$ -vector space  $\mathbb{R}^4$  and N is the subspace spanned by the vectors  $\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^\top$  and  $\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^\top$  (under the standard basis). Find a basis for V/N and prove that  $V/N \simeq \mathbb{R}^2$ .

### 2 The Maps Matter

In this section "map" is short for "linear transformation". Now, there is a way to define subspaces and kernels using maps alone, but to focus on quotient spaces, we use the classical definitions of these objects.

**Definition 4.** Suppose N is a subspace of V. Then a quotient of V by N is a pair  $(Q, \pi)$  where Q is a vector space and  $\pi$  is a surjective map  $V \to Q$  such that  $N \subseteq \ker \pi$  and the following property holds:

Given any map  $\phi: V \to W$  such that  $N \subseteq \ker \phi$ , there is a unique map  $\overline{\phi}$  such that

commutes; that is,  $\overline{\phi} \circ \pi = \phi$ . This is called the *universal property* of quotients.

**Theorem 2.** Suppose N is a subspace of V. Also suppose  $(Q,\pi)$  and  $(Q',\pi')$  are two quotients of V by N. Then there is an isomorphism  $\iota:Q\stackrel{\sim}{\to}Q'$  with  $\iota\circ\pi=\pi'$ .

*Proof.* Consider the following diagram

$$V \xrightarrow{\pi'} Q'$$

$$\downarrow Q$$

In particular, since  $N \subseteq \ker \pi'$ , the universal property of quotients tells us that there is a unique map  $\overline{\phi}: Q \to Q'$  such that the following diagram commutes:



By the same logic, there exists a unique map  $\overline{\phi}': Q' \to Q$  such that the following diagram commutes:



Now we simply have to prove that  $\overline{\phi}$  and  $\overline{\phi'}$  are inverses. To do this, notice that because  $N \subseteq \ker \pi$ , the universal property of quotients tells us that there is a  $unique \max \overline{\pi}: Q \to Q$  such that  $\overline{\pi} \circ \pi = \pi$ . Now, the identity map  $\mathrm{id}_Q: Q \to Q$  satisfies  $\mathrm{id}_Q \circ \pi = \pi$ , but since the above diagram commutes, we also find that  $(\overline{\phi'} \circ \overline{\phi}) \circ \pi = \pi$  too. Since  $\overline{\pi}$  is unique, we may indeed conclude that  $\overline{\phi'} \circ \overline{\phi} = \mathrm{id}_Q$ . By identical logic on the uniqueness of  $\overline{\pi'}$ , we may conclude that  $\overline{\phi} \circ \overline{\phi'} = \mathrm{id}_{Q'}$ , so indeed  $\overline{\phi}$  and  $\overline{\phi'}$  are inverses. Therefore, they are both isomorphisms, and in particular  $\overline{\phi}$  is an isomorphism  $Q \xrightarrow{\sim} Q'$  with  $\overline{\phi} \circ \pi = \pi'$ .

Corollary 2.1. Up to isomorphism, there is a unique quotient of V by N. We denote this quotient V/N.

**Problem 3.** Repeat Problem 2 using the "map-perspective" definition of quotients.

## 3 It's All the Same (up to Isomorphism)

**Theorem 3.** The definition of V/N using cosets satisfies the universal property of a quotient of V by N.

*Proof.* Let  $\pi: V \to V/N$  be the map given by sending x to x+N. Clearly, this map is surjective and  $\ker \pi = N$ . Next, suppose that  $\phi: V \to W$  is a linear transformation such that  $N \subseteq \ker \phi$ . We must demonstrate that there is a unique linear transformation  $\overline{\phi}: V/N \to W$  satisfying  $\overline{\phi} \circ \pi = \phi$ .

Now, if  $\overline{\phi} \circ \pi = \phi$ , then for any  $x \in V$ ,  $\overline{\phi}(\pi(x)) = \phi(x)$ , so  $\overline{\phi}(x+N) = \phi(x)$ . This tells us that the behavior of  $\overline{\phi}$  is completely determined, so this is the *only valid option* for  $\overline{\phi}$ . Thus, if we show that  $\overline{\phi}$  is indeed a linear transformation, then it is the unique linear transformation with  $\overline{\phi} \circ \pi = \phi$ , as desired.

There is some nuance here: it's not entirely obvious that our definition is well-defined. Precisely, if x+N=x'+N, how can we be sure that  $\phi(x)=\phi(x')$  so  $\overline{\phi}(x+N)=\overline{\phi}(x'+N)$ ? To prove this, recall that x+N=x'+N if and only if  $x-x'\in N$ . But since  $N\subseteq\ker\phi$ , this implies that  $\phi(x-x')=0$ . But then, because  $\phi$  is a linear transformation,  $\phi(x)-\phi(x')=0$ , and indeed  $\phi(x)=\phi(x')$ .

Now that we know  $\overline{\phi}$  is well-defined, it suffices to prove that it is a linear transformation. Yet this is simple if we recall that  $\phi$  is a linear transformation. That is, if  $c, d \in F$  and  $x, y \in V$ , then

$$\overline{\phi}(c(x+N)+d(y+N)) = \overline{\phi}((cx+dy)+N) = \phi(cx+dy) = c\phi(x)+d\phi(y) = c\overline{\phi}(x+N)+d\overline{\phi}(y+N).$$

Thus  $\overline{\phi}$  is linear, so we are done.

Corollary 3.1. Both definitions of quotient spaces (classical and map-based) are isomorphic by Theorem 2.