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1 Introduction

Here, we present a modified (and corrected) proof originally due to Alon and Kleitman in their 1990 paper
“Sum-free Subsets” of the following result:

Theorem 1. Given any set B of nonzero elements from an finite abelian group A, there exists C ⊆ B such
that C is sum-free (that is, there do not exist x, y, z ∈ C such that x+ y = z) and |C| > 2

7 |B|.

Since it applies to such a wide class of algebraic structures, this result has interesting consequences for
everything from modular arithmetic to chip-firing and sandpiles. To prove this result, we will first use
randomness (in the form of the probabilistic method) to show how one can use sum-free subsets of A to
generate a sum-free subset of B, and then provide the necessary sum-free subsets of A. We choose this order
because the latter process is ultimately less interesting.

2 Even-Spacedness

First, let’s discuss why we might expect randomness to be an effective strategy for discovering results about
subsets of finite abelian groups. Our hint is an idea I call “even-spacedness”, which is a geometric visualiza-
tion of the algebraic fact that the cosets of a subgroup A′ ≤ A have identical cardinality and form a partition
of A. This fact, often used in the first few days of a group theory class to prove Lagrange’s Theorem, has
important consequences for randomness in finite abelian groups.

Explicitly, it leads to the following theorem:

Theorem 2. Suppose φ : A → A′ is a homomorphism between finite abelian groups, and B ⊆ A. Then,
uniformly choosing x ∈ A and considering φ(x) is the same as uniformly choosing x′ ∈ imφ.
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Proof. Suppose that x′ ∈ imφ. Then it is well-known that φ−1(x′) is a coset of kerφ. For example, the set
of elements of A which φ maps to φ(x) is the coset x + kerφ. In particular, this result is used in the proof
of the First Isomorphism Theorem. Now, since all cosets have the same size, a uniform choice of a ∈ A is
implicitly a uniform choice of a coset of kerφ, which after applying φ (via the correspondence between cosets
of kerφ and elements of imφ described above), is a uniform choice of an element in imφ.

3 A Simplifying Perspective

Our first step will be to simplify the form of our abelian group A. For this, it is useful to recall the structure
theorem for finitely generated abelian groups, which states that

A ' Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nkZ

for some integers n1, . . . , nk such that ni | ni+1. We call these integers the invariant factors of A.

Now, abbreviate nk by n. Notice that since ni | n for each i, there is a natural injection

φi : Z/niZ ↪→ Z/nZ

given by x mod ni 7→ xn
ni

mod n. Taking the product of these injections gives us a natural injection

A ' Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nkZ ↪→ (Z/nZ)k.

Note that any element x ∈ (Z/nZ)k can be represented as (x1, . . . , xk) for x1, . . . , xk ∈ Z/nZ. This embed-
ding is helpful because any subset B ⊆ A can be now be considered as a subset of (Z/nZ)k, and finding a
large sum-free subset of B ⊆ (Z/nZ)k is the same as finding a large sum-free subset of B ⊆ A.

4 Defining a Random Variable

Note: For convenience, let B = {b1, . . . , bm}. Since each element of B is now an element of (Z/nZ)k,
bi = (bi1, . . . , bik) for some bij ∈ Z/nZ for each i.

Now, we want to define a random variable to help us isolate a sum-free subset of B. For this, define

φi : (Z/nZ)k → Z/nZ to be given by (x1, . . . , xk) 7→
k∑

j=1

xjbij .

Now, suppose that we have a sum-free subset F ⊆ Z/nZ. Then choose x ∈ (Z/nZ)k uniformly at random,
and let XF be the random variable denoting the number of bi ∈ B such that φi(x) ∈ F . In other words, if
CF ⊆ B is the set {bi ∈ B | φi(x) ∈ F}, then XF = |CF |.

Why is this a useful choice? The answer is that CF is a sum-free subset. To see why, suppose

bi + bk = bl.

with bi, bk, bl ∈ CF . Then, in particular, bij +bkj = blj for each j; that is, because the sum is coordinate-wise,
the coordinates sum to each other. But then, notice that

φi(x) + φk(x) =

k∑
j=1

xjbij +

k∑
j=1

xjbkj =

k∑
j=1

xj(bij + bkj) =

k∑
j=1

xj(blj) = φl(x)

but this is impossible, since bi, bk, bl ∈ CF implies that φi(x), φk(x), φl(x) ∈ F , and F is sum-free. Therefore,
by contradiction, CF must be sum-free.

Note: By our above work, if s is the size of the largest sum-free subset of B, then s ≥ XF (x) for any x.
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5 The Expectation of XF

Notice that XF = 0 with positive probability; for example, given the choice x = (0, . . . , 0), φi(x) = 0 6∈ F
for every i. Therefore, there must be some outcome (that is, some choice of x) such that XF (x) > E[XF ], so
in particular if we can show that the expectation of E[XF ] ≥ 2

7m then we are immediately done. Therefore,
we will compute the expectation of XF .

To compute E[XF ], notice that if di = gcd(bi1, . . . , bik, n), then im(φi) = di(Z/nZ). Therefore, by even-
spacedness, φi(x) is uniformly distributed over Z/nZ as x is uniformly distributed over (Z/nZ)k. Hence,

P(bi ∈ CF ) = P(φi(x) ∈ F ) =
|di(Z/nZ) ∩ F |
|di(Z/nZ)|

Therefore, by the linearity of expectation,

E[XF ] = E[|CF |] =

m∑
i=1

|di(Z/nZ) ∩ F |
|di(Z/nZ)|

In other words, if we can find a sum-free subset F satsfying

|d(Z/nZ) ∩ F |
|d(Z/nZ)|

≥ 2

7
(1)

for each divisor d of n, then we would know that

E[XF ] =

m∑
i=1

|di(Z/nZ) ∩ F |
|di(Z/nZ)|

≥
m∑
i=1

2

7
=

2

7
m.

We call a sum-free subset of Z/nZ satisfying (1) a “sufficiently large sum-free subset”. By our above work,
all we need to do is find a sum-free subset F satisfying (1) for each Z/nZ.

6 Conclusion

Unfortunately, this is impossible: for various Z/nZ, no sufficiently large sum-free subsets exist. I verified
via computer search that no sufficiently large sum-free subset exists for Z/4Z, Z/8Z, Z/12Z, and Z/16Z (in
fact, it is possible that no sufficiently large sum-free subset exists for Z/nZ for any n ≡ 0 mod 4). You can
access the (very unoptimized) code I wrote for this search here (clickable link).

Therefore, we’ll need to use a different trick. We’ll use two different sum-free subsets F and F ′ of Z/nZ,
which happen to satisfy the following relation

4
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|d(Z/nZ) ∩ F |
|d(Z/nZ)|

+
3

7

|d(Z/nZ) ∩ F ′|
|d(Z/nZ)|

≥ 2

7
(2)

These sum-free subsets are

F =

{
x ∈ Z/nZ

∣∣∣∣∣ 1

3
n < x ≤ 2

3
n

}
F ′ =

{
x ∈ Z/nZ

∣∣∣∣∣ 1

6
n < x ≤ 1

3
n or

2

3
n < x ≤ 5

6
n

}
.

A simple size argument shows that these sets are sum-free, and the proof they satisfy (2) is in the appendix
below. However, assuming they satisfy (2), we can complete the result using a small trick. Recall that s is
the size of the largest sum-free subset of B, and that E[XF ] > s for any sum-free subset F of Z/nZ.

s =
4

7
s+

3

7
s >

4

7
E[XF ] +

3

7
E[XF ′ ] =

4

7

m∑
i=1

|di(Z/nZ) ∩ F |
|di(Z/nZ)|

+
3

7

m∑
i=1

|di(Z/nZ) ∩ F ′|
|di(Z/nZ)|

=

=

m∑
i=1

(
4

7

|di(Z/nZ) ∩ F |
|di(Z/nZ)|

+
3

7

|di(Z/nZ) ∩ F ′|
|di(Z/nZ)|

)
≥

m∑
i=1

2

7
=

2

7
m

Hence the result follows assuming F and F ′ satisfy (2), as desired.
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7 Appendix: The Auxiliary Lemma

Lemma 3. Define

F =

{
x ∈ Z/nZ

∣∣∣∣∣ 1

3
n < x ≤ 2

3
n

}
F ′ =

{
x ∈ Z/nZ

∣∣∣∣∣ 1

6
n < x ≤ 1

3
n or

2

3
n < x ≤ 5

6
n

}
.

Then, for every d | n,
4

7

|d(Z/nZ) ∩ F |
|d(Z/nZ)|

+
3

7

|d(Z/nZ) ∩ F ′|
|d(Z/nZ)|

≥ 2

7
. (2)

Proof. First, notice that |d(Z/nZ)| = (n/d). Then, by inspection, we complete the following table:

n
d

|d(Z/nZ)∩F |
|d(Z/nZ)|

|d(Z/nZ)∩F ′|
|d(Z/nZ)|

6k 2k
6k = 1

3
2k
6k = 1

3

6k + 1 2k
6k+1 ≥

2
7

2k
6k+1 ≥

2
7

6k + 2 2k+1
6k+2

2k
6k+2

6k + 3 2k+1
6k+3 = 1

3
2k+1
6k+3 = 1

3

6k + 4 2k+1
6k+4

2k+2
6k+4

6k + 5 2k+2
6k+5 >

1
3

2k+2
6k+5 >

1
3

In particular, for every case but n
d = 6k + 2 and n

d = 6k + 4, it is clear that (2) holds. However, these two
cases require slightly more work. The first case, n

d = 6k + 2, holds because

4

7
· 2k + 1

6k + 2
+

3

7
· 2k

6k + 2
=

1

7
· 14k + 4

6k + 2
=

1

7
· 7k + 2

3k + 1
≥ 2

7
.

Similarly, the second case, n
d = 6k + 4, holds because

4

7
· 2k + 1

6k + 4
+

3

7
· 2k + 2

6k + 4
≥ 4

7
· 1

4
+

3

7
· 1

3
=

1

7
+

1

7
=

2

7
.

Hence in these cases (2) also holds, so we are done.
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