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1 First Definitions

In these notes, we will discuss set theory using the language of ZFC. Set theory, alongside basic logic,
is commonly seen as the basis of modern mathematics. However, in some sense, we have to “believe”
that this system works – there is no way to find any reasonable consistent axiomatic system which is
either complete or provably consistent. Following are informal descriptions of Gödel’s famous incom-
pleteness theorems, which formalize this sentiment:
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Theorem 1.0.1 (Gödel’s first incompleteness theorem): Let T be a set of axioms expressed in
a formal language L such that (i) T is consistent, (ii) there is an effective algorithm that decides for
an arbitrary sequence of the language L whether it is in T or not, and (iii) T contains the arithmetic
of the natural numbers. Then there is a sentence ϕ of the language L such that neither ϕ nor its
negation ¬ϕ can be deduced from the axioms T .

Theorem 1.0.2 (Gödel’s second incompleteness theorem): Let T be a set of axioms with the
same properties as above. Then there is a sentence ϕ of the language L that encodes the statement
“T is consistent”, but ϕ is not a consequence of the axioms T .

We do not shy away from this failure: the author considers worrying about possible esoteric contra-
dictions akin to solipsism. It is pointless to worry about whether or not we live in a perfectly made
simulation, since we cannot prove it one way or another. Thus, unless we get an actual example of
a contradiction that irreparably ruins ZFC set theory, we will continue to make use of the powerful
tool that is set theory.

1.1 Primitive Notions

We begin with two primitive notions: the set (which is either the empty set or an object containing
other sets) and the class, which is an intuitive concept meant to give us a term for those objects “too
large” to be sets.

The class is not a part of ZFC, and we will not use it in any rigorous or formal capacity (though one
can in other axiomatic systems such as NBG), but it is a helpful linguistic tool.

Here, we will usually use English letters (fonts include a, A, A, or A ) to denote sets, and Greek letters
(such as ϕ or γ) to denote formulas. Furthermore, we will freely use the following logical symbols:

• ∀ means “for all”, ∃ means “there exists” (and !∃ means “there exists a unique”).

• ∈ means “is a member of” and ⊆ means “is a subset of”

• ⇒ means “implies”, ⇐ means “is implied by”, and ⇔ means “is logically equivalent to”.

• “And”, “or”, and “not” are all standard logical operators, and we may replace them with the
symbols ∧,∨, and ¬, respectively.

1.2 The Zermelo-Fraenkel Axioms

Axiom 1 (The Axiom of Extensionality). Two sets are equal if they have the same members.

∀A ∀B [∀x(x ∈ A⇔ x ∈ B)⇒ A = B] (1)

Axiom 2 (The Pairing Axiom). Given two sets u and v, there exists a set {u, v}.

∀u∀v ∃B ∀x(x ∈ B ⇔ x = u or x = v) (2)

Axiom 3 (The Union Axiom). Given any set A, there is a set B whose elements are the members of
the members of A. In this case, we write B =

⋃
A.

∀A ∃B ∀x(x ∈ B ⇔ ∃b ∈ A(x ∈ b)) (3)

Definition 1.1 (Power Set). The power set of a set S is the collection of subsets of S and is denoted
P(S). Clearly, if S has finitely many elements, |P(S)| = 2|S|.

Axiom 4 (The Axiom of the Power Set). The power set P(S) of any set S is a set.

∀a ∃B(x ∈ B ⇔ x ⊆ a) (4)
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Axiom 5 (The Axiom Schema of Specification). For each formula not containing B,

∀t1 . . . ∀tn ∀c ∃B ∀x(x ∈ B ⇔ x ∈ c and ) (5)

is an axiom.

Definition 1.2 (Successor, Inductive Sets). Let the successor of a set a, denoted a+, be a∪{a}. We
call a set S inductive if ∅ ∈ S and ∀(a ∈ A)a+ ∈ A.

Axiom 6 (The Axiom of Infinity). There exists an inductive set. Formally:

∃A[∅ ∈ A and ∀(a ∈ A)a+ ∈ A] (6)

Axiom 7 (The Axiom of Replacement). If ϕ(x, y) is a formula not containing B, the following is an
axiom:

∀A[(∀x ∈ A)∀y1,∀y2(ϕ(x, y1) and ϕ(x, y2)⇒ y1 = y2)⇒ ∃B∀y(y ∈ B ⇔ (∃x ∈ A)ϕ(x, y))] (7)

In English, this axiom says that if we have a function-class H = {〈x, y〉 | x ∈ A and ϕ(x, y)}, then
B = H|A (the image of B under H) is a set.

Axiom 8 (The Regularity Axiom). Every nonempty set A has a member m with m ∩A = ∅.

Theorem 1.1 (Russell’s Paradox). There is no set to which every set belongs.

Proof. Let A be such a set. Then, take B = {x | x ∈ A and x 6∈ x}. By the construction of B,
B ∈ B ⇔ B ∈ A and B 6∈ B. Since it cannot be the case that B ∈ B and B 6∈ B, B 6∈ A, a
contradiction.

Theorem 1.2 (Intersections). For any nonempty set A, there is a unique set B such that x ∈ B ⇔
∀a ∈ A, x ∈ a. We write B =

⋂
A and say B is the intersection of all sets in A.

Theorem 1.3 (Empty Set). The empty set exists and is unique.

Proof. Consider the set A defined in the axiom of infinity. Then consider the subset B ⊆ A given
by all elements x ∈ A such that x 6= x. Clearly, no such set exists, so B contains no elements. The
uniqueness of B follows from the axiom of extensionality.

Thus, we may denote the empty set by ∅. On the other hand, there are infinitely many sets with one
element, which we call the “singletons”.

Definition 1.3 (Difference and Symmetric Difference). The difference A−B is the set of all elements
in A not in B. The symmetric difference of two sets A and B is denoted by A4B and defined as the
union (A−B) ∪ (B −A).

Theorem 1.4 (Foundation). No set is a member of itself.

Theorem 1.5 (Laws on the Algebra of Sets).

1. A ∩B = B ∩A and A ∪B = B ∪A (commutativity)

2. A ∪ (B ∪ C) = (A ∪B) ∪ C and A ∩ (B ∩ C) = (A ∩B) ∩ C (associativity)

3. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (distributivity)

4. C − (A ∪B) = (C −A) ∩ (C −B) and C − (A ∩B) = (C −A) ∪ (C −B) (de Morgan’s laws)

5. A ∪∅ = A, A ∩∅ = ∅, and A ∪ (C −A) = ∅ (identities on ∅)

Proof: The proof of these rules is left as an exercise for the reader. A hint: use Venn diagrams to
visualize each rule and then formalize your results.
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1.3 Ordered Tuples, Relations, and Functions

Definition 1.4 (Ordered Pair). An ordered pair of sets x, y (denoted 〈x, y〉) is the set {x, {x, y}}.
Notice that 〈x, y〉 = 〈u, v〉 if and only if x = u and y = v.

Definition 1.5 (Cartesian Product). The Cartesian product of two sets A and B is the set of all
ordered pairs of elements 〈x, y〉 with x ∈ A, y ∈ B. Formally, we write A×B = {〈x, y〉 | x ∈ A, y ∈ B}.

To prove that A × B is actually a set, notice that C × C is contained in the set P(P(C)) and then
realize that A×B is contained in the set P(P(A ∪B)).

Definition 1.6 (Relation). A relation is a set of ordered pairs. Instead of writing 〈x, y〉 ∈ R, we
write xRy.

For example, let ω be the set of natural numbers (ignore that we haven’t defined that yet) and < be
the relation {〈x, y〉 ∈ ω × ω | x is less than y}, Then, 〈2, 3〉 ∈ < so we write 2 < 3.

Definition 1.7 (Properties of Relations). Following are some possible properties of relations:

• A relation is symmetric if xRy ⇔ yRx and anti-symmetric if xRy and yRx⇒ x = y.

• A relation is reflexive if xRx always holds, and irreflexive if xRx never holds.

• A relation is connected if for any x, y such that x 6= y, either xRy or yRx holds.

• A relation is tricohotomous (or satisfies trichotomy) if, for any x, y ∈ R, exactly one of xRy, x =
y, yRx holds.

Definition 1.8 (Domain, Range, Field). The domain of R, denoted domR, are those x such that
∃y 〈x, y〉 ∈ R. Conversely, the range of R, denoted ranR, are those y such that ∃x 〈x, y〉 ∈ R. Finally,
the field of R, fldR, is domR ∪ ranR.

Again, we cannot immediately assume that domR and ranR are actually sets, but it is not hard to
prove that they are, as Lemma 1.6 implies that domR and ranR are contained in a set.

Lemma 1.6. If 〈x, y〉 ∈ R, then x, y belong to
⋃⋃

A.

Definition 1.9 (n-Tuples). Let 〈x〉 := x be a 1-tuple and then define 〈x1, . . . , xn〉 := 〈〈x1, . . . , xn−1〉 , xn〉
inductively as an n-tuple. For example, 〈x, y, z〉 = 〈〈x, y〉 , z〉. For each n, two n-tuples are equal if
and only if each of their ith entries, for every i, are equal.

Definition 1.10 (n-ary Relation). An n-ary relation on a set A is a set of ordered n-tuples with all
elements in A. In other words, a binary relation on A is a subset of A×A, a ternary relation on A is
a subset of (A×A)×A, and so on.

Definition 1.11 (Function). A function is a relation F such that, for any x in domF , there is exactly
one y such that 〈x, y〉 ∈ F . In this case, we call y the value of F at x, and write F (x) = y.

Definition 1.12 (Properties of Functions).

• We say that F is a function from A to B (and write F : A→ B) if domF = A and ranF ⊆ B.
In this case, we call B the codomain of F .

• Furthermore, if ranF = B, we call the function onto or surjective on B, and say F is a function
from A onto B.

• If, for every y ∈ ranF , there is only one x such that F (x) = y, we call the function one-to-one or
injective. We generalize this to the concept of single-rooted relations when F is not a function.

• A function which is surjective and injective is called bijective or a one-to-one correspondence.

Theorem 1.7 (Objects Formed From Relations). For any relation F (not just functions), the fol-
lowing objects are sets:
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• The set F−1 = {〈u, v〉 | vFu}, called the inverse of F .

• The set F ◦G = {〈u, v〉 | ∃t(uGt & tFv), called the composition of F and G.

• The set F |A = {〈u, v〉 ∈ F | u ∈ A}, called the restriction of F to A.

• The set ran(F |A), called the image of A under F .

Theorem 1.8 (Properties of These Objects).

• For any relation F , domF−1 = ranF and ranF−1 = domF .

• For any relation F ,
(
F−1

)−1
= F .

• For any relation F , F−1 is a function if and only if F is single-rooted.

• If F is a one-to-one function, x ∈ domF ⇒ F−1F (x)) = x and y ∈ ran(F )⇒ F (F−1(y)) = y.

• If F and G are functions, F ◦G is a function with domain {x ∈ domG | G(x) ∈ domF}.
• For any relations F,G, (F ◦G)−1 = G−1 ◦ F−1.

1.4 Equivalence Relations, Unions, and Products

Definition 1.13 (Equivalence Relation). We call a relation R an equivalence relation on A if R is a
binary relation on A that is reflexive, symmetric, and transitive.

Definition 1.14 (Equivalence Class). The set [x]R is defined by [x]R = {t | xRt}, and is called the
equivalence class of x modulo R (if R is an equivalence relation).

Lemma 1.9. If R is an equivalence relation on A with x, y ∈ A, then [x]R = [y]R iff xRy.

Definition 1.15. A partition Π of a set A is a set of nonempty subsets of A that is disjoint and
exhaustive. In other words, no two distinct sets in Π have any common elements, and each element
of A is in some set of Π.

Theorem 1.10 (Partitions and Equivalence Relations). There is a natural bijective correspondence
between partitions and equivalence relations, namely:

• If R is an equivalence relation on A, then the set {[x]R | x ∈ A} is a partition of A.

• If Π is a partition of A, then the relation R = {〈x, y〉 | ∃p ∈ Π, x, y ∈ p} is an equivalence
relation on A.

Definition 1.16 (Quotient Set and Natural Map). If R is an equivalence relation on A, then we
can define the quotient set A/R = {[x]R | x ∈ A} whose members are the equivalence classes. The
expression A/R is read A modulo R, and gives us the natural map or canonical map ϕ : A → A/R
given by ϕ(x) = [x]R.

Definition 1.17 (Compatibility). A function F : A→ A is compatible with an equivalence relation
R on A if, for all x and y in A, xRy ⇒ F (x)RF (y). In this case, there exists a unique F̃ : A/R→ A/r
such that F̃ ([x]R) = [F (x)]R.

Definition 1.18 (Indexing an Infinite Union). Let I be a set, called an index set. Further let F be
a function whose domain includes I. Then we define⋃

i∈I
F (i) =

⋃
{F (i) | i ∈ I} (8)

Definition 1.19 (General Cartesian Products). Let I be our index set and let H be a function whose
domain includes I. Then, we define:∏

i∈I
H(i) = {f | f is a function with domain I and (∀i ∈ I)f(i) ∈ H(i)} (9)

Thus the members of
∏
i∈I H(i) are |I|-tuples for which the ith coordinate is in H(i).
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1.5 Orderings and Isomorphisms

Definition 1.20 (Partial Ordering). A partial ordering on a set S is a relation R such that R is
transitive, reflexive, and antisymmetric.

Definition 1.21 (Linear Ordering). Let A be any set. A linear ordering on A (also called a total
ordering on A) is a binary relation R on A which is transitive and trichotomous on A. Any linear
ordering is irreflexive and connected.

Theorem 1.11. Any partial ordering R on X can be extended to a linear ordering R′ on X such that
R ⊆ R′.

It should be clear why we call such a ordering linear – we can never go in a circle without contradicting
trichotomy.

Definition 1.22 (Structure). A structure is a pair 〈A,R〉 consisting of a set A and a binary relation
R ⊆ A × A on A. In particular, if R is a partial ordering, we call the structure a partially ordered
structure or poset, and if it is a linear ordering, we call the structure a linearly ordered structure or
loset.

Definition 1.23 (Minimal/Maximal/Least/Greatest Elements). A minimal element in a set S with
a partial order < is an element m such that there is no x ∈ S with x < m. In this case, we say that
m is <-minimal on S. Similarly, we call m a least element if m ≤ x for all x ∈ S.

A maximal element in a set S with a partial order < is an element m such that there is no x ∈ S
with m < x. In this case, we say that m is <-maximal on S. Similarly, we call m a greatest element
if x ≤ m for all x ∈ S.

Clearly, a least/greatest element is also minimal/maximal, but if our relation is not linear, then
“least/greatest” is a stronger condition.

Definition 1.24 (Upper/Lower Bound, Supremum, Infimum). An upper bound on a subset A ⊆ S
with partial ordering < is an element s ∈ S such that x ≤ b for all x ∈ A. A supremum is a least
upper bound – i.e. a least element of the set of all upper bounds for C (if it exists). We analogously
define lower bound and greatest lower bound/infimum.

Definition 1.25 (Well-Founded). A relation R is well-founded on D if every nonempty set D contains
an R-minimal element. Clearly if D 6⊆ fldR, then any m ∈ D − fldR is an R-minimal element, so we
can restrict our attention to subsets of fldR.

For example, the regularity axiom implies that for any set S, the membership relation ∈S= {〈x, y〉 ∈
S × S | x ∈ y} is well-founded on S. In fact, one can prove that the regularity axiom is equivalent to
the theorem that any nonempty set has an ∈-minimal element.

Theorem 1.12 (Well-Founded ⇔ No Descending Chains). A relation R is well-founded iff there is
no function f with domain ω such that f(n+)Rf(n) – i.e. it has no infinitely descending chains.

Proof. If R is not well founded, then there exists a nonempty set A without an R-minimal element.
Thus, define f(0) to be any element in A, and f(n+) to be the element y such that yRf(n) (which we
know exists by the lack of a minimal element), giving us an infinitely descending chain. The opposite
direction is similarly easy.

Definition 1.26 (Well Ordering). A well ordering on S is a well-founded linear ordering on S.

Definition 1.27 (Isomorphism). An isomorphism from a structure 〈A,R〉 onto 〈B,S〉 is a bijection
f from A → B such that xRy if and only if f(x)Sf(y). In this case, we call the two structures
isomorphic. This is an equivalence relation on the class of sets.
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Definition 1.28 (Chain). A subset A of a partially ordered set 〈P,≤〉 is called a chain if 〈A,≤ |A〉
is a totally ordered set. Equivalently, A ⊆ P is a chain if, for any a, b ∈ A, either a ≤ b or b ≤ a.

If no partial ordering is explicitly mentioned (as in the case of formulation 5 of Theorem 1.13), then
we assume that the partial ordering being mentioned is the inclusion ordering ⊆.

1.6 The Axiom of Choice

Axiom 9 (The Axiom of Choice). Let A be a family of nonempty disjoint sets. Then there exists a
set C containing exactly one element from each member of A.

Theorem 1.13 (Equivalent Formulations of the Axiom of Choice). All of the following theorems are
equivalent to the axiom of choice (assuming the other ZF axioms).

1. For any relation R there is a function F ⊆ R with domF = domR.

2. The Cartesian product of nonempty sets is nonempty.

3. For any set A there is a function F (a “choice function” for A) such that the domain of F is
the set of nonempty subsets of A and F (B) ∈ B for each nonempty B ⊆ A.

4. Zorn’s Lemma: If 〈P,≤〉 is a partially ordered set such that every chain in P has an upper bound
then P has a maximal element m.

5. Hausdorff Maximal Principle: If F is a nonempty family of subsets of a set A such that the
union of every chain S ⊆ F is also in F , then F has a maximal subset.

6. The Well Ordering Theorem: Any set can be well-ordered.

Theorem 1.14 (Inverses of Functions). Suppose that F : A→ B is a function with A,B 6= ∅. Then

1. There exists a function G : B → A such that G ◦ F is the identity function IA on A (concisely,
we say G is a left inverse of F ) iff F is injective.

2. There exists a function H : B → A such that F ◦H is the identity function IB on B (concisely,
we say H is a right inverse of F ) iff F is surjective.

Corollary 1.14.1 (Two-Sided Inverses of Bijections). A function F : A→ B is bijective iff it has a
two-sided inverse (a function G such that F ◦G = IB and G ◦ F = IA).

Warning: This is not perfectly trivial from Theorem 1.14, as you must prove that the left and right
inverses are actually the same.

Definition 1.29 (Set of Functions). For sets A and B we can form the set of functions F from A
into B, denoted BA. Notice that if A and B are finite sets with |A| = a, |B| = b, then |BA| = ba.

2 Important Constructions

At first glance, numbers may seem like completely different entities than sets. However, akin to how
the letter A is a label for a set, so too is the number 0 or the number 5. In this section, we will explore
exactly what this means and define each of the usual number classes we encounter in modern math.

2.1 The Natural Numbers and Peano Systems

Recall the definition of the successor a+ of a set from Definition 1.2. Further recall the definition of
inductive sets from Definition 1.2 and Axiom 6 which states that such a set exists.

Definition 2.1 (Natural Number). A natural number is a set that belongs to every inductive set.
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There is a set of all natural numbers (as it must be a subset of the set specified in the Axiom of
Infinity), which we will denote ω here (though in other areas of math, it is usually called N). Clearly,
ω = {0, 0+, 0++, 0+++, . . . }, since this is an inductive set but any inductive set must contain this set.
We have shorthand for these symbols, of course: 1 is defined as 0+, 2 is defined as 0++, and so on.

Theorem 2.1 (Finite Induction). Any inductive subset S of ω coincides with ω. In particular, if one
lets the subset S ⊆ ω be the set of natural numbers with a certain property P , and one proves that
0 ∈ S and n ∈ S ⇒ n+ ∈ S, then all natural numbers satisfy P .

Definition 2.2. A Peano system is a triple 〈N,S, e〉 consisting of a set N , a function S : N → N ,
and a member e ∈ N such that the following three conditions are met:

1. e 6∈ ran(S)

2. S is injective.

3. Any subset A of N that contains e and is closed under S (that is, if x ∈ A, S(x) ∈ A) is N itself.

The first two conditions force our chain e, S(e), S2(e), . . . to be a never-ending “line”, and the third
condition is an analogue of the induction postulate that we proved for natural numbers. From this
alone we can build up the arithmetic of the natural numbers – called Peano arithmetic.

Notice that if σ denotes the restriction of the successor operation to ω, then 〈ω, σ, 0〉 is a Peano sys-
tem. That is, the natural numbers initialized from 0 and inductively defined via succession form a
Peano system. Of course, this should not be surprising: the natural numbers were the model for the
definition of a Peano system.

Definition 2.3 (Transitive). A set A is said to be transitive if every member of a member of A is a
member of A. Formally, x ∈ a ∈ A⇒ x ∈ A.

Notice that every natural number is a transitive set (since n = {0, 1, 2, . . . , n − 1}). Thus, the set
ω, the union of them, is a transitive set. Furthermore, notice that if a is a transitive set (not just a
natural number), then

⋃
(a+) = a.

Theorem 2.2 (The Recursion Theorem on ω). If A is a set with a ∈ A, and F is a function A→ A,
then there exists a unique function h : ω → A such that h(0) = a and h(n+) = F (h(n)).

Proof. Call a function ν “acceptable” if dom ν ⊆ ω, ran ν ⊆ A, and:

1. If 0 ∈ dom ν, then ν(0) = a.

2. If n+ ∈ dom(ν), then n ∈ dom(ν) and ν(n+) = F (ν(n)).

Let H be the set of all acceptable functions, and let H =
⋃

H . Thus nHy iff ν(n) = y for some
acceptable ν. We first show that H is a function, which amounts to showing that two acceptable
functions always agree with each other when both are defined. Then we show that h is acceptable
and has domain ω, and finally demonstrate that h is unique.

All of these steps follow fairly easily from creating a subset for which the claim we want to be true
holds, and then showing that said subset is inductive.

Theorem 2.3 (Peano Systems Model Natural Numbers). Let 〈N,S, e〉 be a Peano system. Then
〈ω, σ, 0〉 is isomorphic to 〈N,S, e〉 – that is, there is a bijective function h from ω to N which preserves
the successor operation (h(σ(n)) = S(h(n))) and the zero element (h(0) = e).

Proof. Use Theorem 2.2 to prove that such a function exists and then prove that it is bijective.

Thus, up to isomorphism, 〈ω, σ, 0〉 is the unique number system satisfying the Peano axioms.
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2.2 Arithmetic

Definition 2.4 (Binary Operation). A binary operation on a set A is a function A×A→ A.

We now want to find a way to define addition. To do this, consider a function Am : ω → ω where
Am(n) should be m added to n. For this to be the case, then Am(0) must surely equal m, and
furthermore Am(n+) = Am(n)+. But then, by Theorem 2.2, there is a unique such function!

Definition 2.5 (Addition). Addition (+) is the binary operation on ω such that for any m and n in
ω, m+ n = Am(n).

Theorem 2.4 (Properties of Addition).

1. m+ 0 = 0 +m = m

2. m+ n+ = (m+ n)+

3. (m+ n) + k = m+ (n+ k)

4. m+ n = n+m

We now want to define multiplication, and follow our previous example by considering the unique
function Mm such that Mm(0) = 0 and Mm(n+) = Mm(n) +m.

Definition 2.6 (Multiplication). Multiplication is the binary operation · on ω such that ∀m,n ∈ ω,
m · n = Mm(n).

Theorem 2.5 (Properties of Multiplication).

1. m · 0 = 0 ·m = 0 and m · 1 = 1 ·m = m

2. m · n+ = m · n+m

3. (m · n) · k = m · (n · k)

4. m · n = n ·m
5. m · (n+ p) = m · n+m · p

Similarly, it is not difficult to define the exponentiation operation and the subtraction/divisors oper-
ations (where they exist).

Definition 2.7 (Order on ω). We associate with ω the order given by x < y if x ∈ y. Similarly, we
define x ≤ y if x ∈ y or x = y.

Theorem 2.6 (Properties of Ordering).

1. Notice p < k+ if and only if p ≤ k, and m < n if and only if m+ < n+.

2. Notice m 6< m for any m ∈ ω (by the earlier result, this would imply by induction that ∅ < ∅,
but clearly ∅ 6∈ ∅, a contradiction).

3. For natural numbers n and m, exactly one of the three (1) n < m, (2) n = m, (3) n > m holds.

4. Order is respected by addition and multiplication.

5. This is a well ordering (see Def. 1.26) on ω

Theorem 2.7. Let A be a subset of ω with the property that, for every n ∈ ω, if all the numbers less
than n are in A, then n ∈ A. Then A = ω.
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2.3 Integers and Rational Numbers

Definition 2.8 (Integers). Let ∼ be the equivalence relation on ω × ω where 〈m,n〉 ∼ 〈p, q〉 if
m+ q = p+ n. Then we define the integers Z to be the set ω × ω/ ∼.

We define addition by 〈m,n〉+〈p, q〉 = 〈m+ p, n+ q〉 and multiplication by 〈m,n〉·〈p, q〉 = 〈mp+ nq,mq + np〉.
We also notice that we can identify Z with the set {. . . ,−1, 0, 1, . . . }. From here, any important basic
properties of the integers (including arithmetic, the fact that Z is a ring, and the fact that Z is an
initial object in Ring) can be easily deduced.

Definition 2.9 (Rationals). Let ∼ be the equivalence relation on Z × Z where 〈m,n〉 ∼ 〈p, q〉 if
mq = np. Then we define the rational numbers Q to be the set Z× Z/ ∼.

We define addition by 〈m,n〉+ 〈p, q〉 = mq+np
nq , and multiplication by 〈m,n〉 · 〈p, q〉 = 〈mp, nq〉. Again,

we can derive any important basic properties of the rational numbers.

2.4 Defining the Real Numbers

We simply state two equivalent definitions of the real numbers here, and leave it to the reader (if
they are curious) to use the properties of the rationals to prove the basic rules of arithmetic for real
numbers.

Definition 2.10 (Cauchy Sequences). A Cauchy sequence is a function s : ω → Q such that |sm−sn|
is arbitrarily small for sufficiently large m,n. Formally, s : ω → Q is Cauchy if for any ε > 0, there
exists an N such that if m,n > N , sm − sn < ε.

Definition 2.11 (Cauchy Equivalence). Two Cauchy sequences r and s are equivalent under the
equivalence relation ∼ if they have the same limit (formally, if |rm − sm| < ε for sufficiently large m
for any ε > 0).

Definition 2.12 (Reals, Def. 1). The set of real numbers is the set of all Cauchy sequences C modulo
the equivalence relation ∼ described in the above definition.

Definition 2.13 (Dedekind Cut). A Dedekind cut is a subset x of Q such that (1) ∅ 6= x 6= Q, (2) x
is “closed downward” (q ∈ x and r < q ⇒ r ∈ x), and (3) x has no largest number.

Definition 2.14 (Reals, Def. 2). The set of real numbers is the set of all Dedekind cuts.

From here, it is not hard to satisfactorily define multiplication, division, addition, subtraction, the
usual linear ordering, and so on.

3 Ordinal Numbers

Definition 3.1 (Initial Segment). If < is an ordering on A and t ∈ A, then the set seg t = {x | x < t}
is called the initial segment up to t. For example, with ω ordered by ∈, seg n = {x | x ∈ n} = n.

Theorem 3.1 (Transfinite Induction). Assume that < is a well ordering on A. Further assume that
B ⊆ A has the special property that for every t ∈ A,

seg(t) ⊆ B ⇒ t ∈ B. (10)

Then B = A.

Proof. If B is a proper subset of A, then A−B has a least element m. By the leastness, y ∈ B for each
y < m: but then segm ⊆ B, so m ∈ B by the construction of m, a contradiction. Thus A = B.
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Theorem 3.2 (Transfinite Recursion Theorem). For any formula γ(x, y), the following is a theorem:

Let A be a set well-ordered by <. Assume that for any f there is a unique y such that γ(f, y). Then,
there exists a unique function F with domain A such that γ(F |seg t, F (t)) for all t ∈ A.

Proof. For t ∈ A, we declare a function ν to be γ-constructed up to t if dom ν = {x | x ≤ t} and, for
any x ∈ dom ν,

γ(ν|seg x, ν(x)). (11)

First, we prove (as in Theorem 2.2), that if ν1 and ν2 are γ-constructed up to t, then ν1 = ν2. Then
consider the set:

X = {v | (∃t ∈ A) ν is a function γ-constructed up tot} (12)

Now let F be
⋃

X . Thus 〈x, y〉 ∈ F ⇔ ν(x) = y for some ν in X . This means that F is indeed
a function. Then, we prove that for any x ∈ domF , γ(F |seg x, F (x)) by construction. Similarly,
domF = A and F is unique, which proves the theorem.

3.1 Ordinal Numbers and Ordinal Arithmetic

Definition 3.2 (∈-images and Ordinals). Consider a well-ordered set 〈A,<〉 and let γ(x, y) mean
that y = ran(x). The transfinite recursion theorem states that there is a unique function E with
domain A such that for any t ∈ A,

E(t) = ran(E |seg t) = {E(x) | x < t} (13)

Then the range of E is some set α, which we call the ∈-image (the “epsilon image”) of A. We also
call α an ordinal number if it is the ∈-image of some set A – specifically, we call it the ordinal number
of the set A.

Theorem 3.3 (A is isomorphic to its ∈-image). Suppose that 〈A,<〉 is a well-ordered set and let α
denote the ∈-image of α. Then:

1. E is a bijection between A and α.

2. For any s, t ∈ A, s < t if and only if E(s) ∈ E(t).

Indeed, if we define the binary relation ∈α= {〈x, y〉 ∈ α × α | x ∈ y}, then the well-ordered structure
〈A,<〉 is isomorphic to 〈α,∈α〉.

Corollary 3.3.1. Any ordinal number α is well-ordered by ∈α and it is a transitive set.

Theorem 3.4 (∈-images are unique). Two well-ordered structures 〈A,<A〉 and 〈B,<B〉 are isomor-
phic if and only if they have the same ∈-image (not just isomorphic ones).

One can view this as a statement about the category of structures, where one direction (they are iso-
morphic if they have the same ∈-image) is trivial and the other (they have the same ∈-image if they
are isomorphic) states that any isomorphism between 〈A,<A〉 and 〈B,<B〉 factors through 〈α,∈α〉.

Theorem 3.5 (Putting the “order” in ordinals). For any two well-ordered structures, either they are
isomorphic to each other or one is isomorphic to an initial segment of the other.

Theorem 3.6 (Classifying Ordinals). Suppose that α is a transitive set such that 〈α,∈α〉 is a well-
ordered structure. Then α is an ordinal number.

Theorem 3.7 (Properties of Ordinal Numbers).

• Any member of an ordinal number is itself an ordinal number.
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• For any two ordinal numbers α, β, exactly one of α ∈ β, α = β, β ∈ α is true.

• Any transitive set of ordinal numbers is itself an ordinal number.

• 0 is an ordinal number.

• If α is any ordinal number, then α+ is also an ordinal number. Indeed, it is the least ordinal
larger than α.

• If A is any set of ordinal numbers, then
⋃
A, the supremum of A, is also an ordinal number.

Thus, we finally have an idea of what the ordinals look like: {0, 1, 2, . . . , ω, ω+, ω++, . . . }. Of course,
we can put the dots here, even though this set is not countable, because we are speaking transfinitely.

3.2 Rank

We want to characterize the totality of sets. V0 will be the empty set, and in general, Vα is the set
of sets whose elements are drawn from all lower-rank sets. Formally, Vα =

⋃
{P(Vβ | β < α)}. By

transfinite induction, we know this defines a set for all ordinals α.

Definition 3.3 (Types of Ordinals). 0 is the zero ordinal, and any ordinal α such that α = β+ for
some β is called a successor ordinal. The ordinals left over, such as ω, are called the limit ordinals.

For a successor ordinal α+, it is not hard to see that Vα+ = P(Vα).

Theorem 3.8 (Every Set Has a Rank). For a given set A, the smallest ordinal α such that A ∈ Vα
is called the rank of A. For example, the rank of ω is ω (in general, the rank of an ordinal is itself).

4 Cardinal Numbers

Definition 4.1 (Equinumerosity). A set A is equinumerous to a set B if there is a bijection between
A and B. Clearly, this is an equivalence relation on the class of sets, so we write A ≈ B if A and B
are equinumerous.

For example, the set ω is is equiumerous with the set ω × ω. An example bijection from ω × ω → ω
is J(m,n) = 1

2 ((m+ n)2 + 3m+ n).

Theorem 4.1 (Cantor’s Diagonal Argument Pt. 1). The set ω is not equinumerous to the set of all
real numbers R.

Proof. Suppose there is a function f : ω → R. Then we arrange the list of values of f in a list (which
we can do by induction): f(0) = r0, f(1) = r1, f(2) = r2, . . . . Now define q as the real number whose
first digit is r0’s incremented by 1, whose second digit is r1’s incremented by 1, and so on. Then
q 6∈ ran(f) so f is not bijective. The result follows.

Theorem 4.2 (Cantor’s Diagonal Argument Pt. 2). There is no set A such that S is equinumerous
to its power set P(A).

Proof. Let f be a function A → P(A). Consider the set B = {x ∈ A | x 6∈ f(x)}. Clearly B ⊆ A so
B ∈ P(A). Now consider any x ∈ A: either x ∈ f(x) or x 6∈ f(x). In the former case, f(x) cannot
equal B because x ∈ f(x). In the latter case, f(x) cannot equal B because x 6∈ f(x) by assumption
and x ∈ B by the construction of B.

Definition 4.2 (Finite and Infinite). A set is finite if it is equinumerous with a natural number.
Otherwise, the set is infinite.

Theorem 4.3 (Properties of Finite and Infinite Numbers).

1. Pigeonhole Principle: No natural number is equinumerous with a proper subset of itself.
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2. No finite set is equinumerous with a proper subset of itself. Indeed, the property of being infinite
is equivalent to the property of being equinumerous to a proper subset of itself. Thus, for example,
ω ≈ ω − {0} is infinite.

3. Any subset of a finite set is finite.

Definition 4.3 (Dominant Sets and Countability). A set A is dominated by a set B (we write A � B)
if there is an injective function A→ B. If a set is dominated by ω, we call it countable (otherwise, it
is uncountable).

Definition 4.4 (Omega). We call the smallest uncountable ordinal Ω.

Theorem 4.4 (Burali-Forti Theorem). There is no set of all ordinal numbers.

Proof. Such a set would be transitive and well ordered by epsilon and thus an ordinal number. But
this implies that some set contains itself, which is a contradiction with the Axiom of Regularity.

Theorem 4.5 (Numeration Theorem). Any set A is equinumerous to some ordinal number.

Proof. Use the Well Ordering Theorem to well-order A according to some relation <. Then consider
the ∈-image of 〈A,<〉: it is an ordinal equinumerous to A.

Definition 4.5 (Cardinality). For any set A, define the cardinal number of A (cardA) to be the
least ordinal equinumerous to A. In particular, any natural number’s cardinality is itself, and the
cardinality of ω (and any countably infinite set) is ω.

Theorem 4.6 (Schröder-Bernstein Theorem). If A � B and B � A, then A ≈ B. Similarly, if
cardA ≤ cardB and cardB ≤ cardA, then cardA = cardB.

Corollary 4.6.1. R ≈ 2ω. That is, cardR = cardP(ω).

Proof. The map 2ω → R given by {a1, a2, . . . } → 0.a1a2 . . . is injective, so 2ω � R. Similarly, the map
[0, 1] ≈ R → 2ω given by 0.a1a2 . . . (where each ai is 0 or 1 and this is all in binary) to {a1, a2, . . . }
is injective, so R � 2ω. Thus R ≈ 2ω.

4.1 The Alephs (ℵ0,ℵ1, . . . ,ℵω, . . . )
Theorem 4.7. The class of all cardinals is not a set.

Proof. Notice that any unbounded class of ordinals is not a set (this is because its union is the entire
class of ordinal – which would be a contradiction with Theorem 4.4). The class of all cardinals is an
unbounded class of ordinals, and thus it is not a set.

Definition 4.6. Let ℵ0 be the least infinite cardinal. Then there is a least infinite cardinal larger
than ℵ0, which we call ℵ1. Similarly, we define ℵα for any ordinal α as the least cardinal number such
that ℵα > ℵβ for all β < α.

Theorem 4.8 (Classification of the Cardinals). If α ∈ β, then ℵα < ℵβ. From this, one may deduce
that every cardinal is of the form ℵα for some cardinal α.

4.2 Order Type and Ordinal Arithmetic

Definition 4.7 (Isomorphism Type). Let R be a binary relation on A. The isomorphism type it 〈A,R〉
of the structure 〈A,R〉 is the set of all structures 〈B,S〉 such that:

1. 〈A,R〉 ∼= 〈B,S〉, and

2. no structure of rank less than rank 〈B,S〉 is isomorphic to 〈B,S〉.
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Theorem 4.9. Structures 〈A,R〉 and 〈B,S〉 are isomorphic iff they have the same isomorphism type.

Definition 4.8 (Order Type). An order type is the isomorphism type of some linearly ordered struc-
ture. Any member of an order type ρ is said to be a linearly ordered structure of type ρ.

Definition 4.9 (Order Type Arithmetic). Suppose we have two structures 〈A,R〉 and 〈B,S〉, with
order types ρ and σ, respectively. Then we define R ⊕ S = R ∪ S ∪ (A × B) and R ∗ S to be the
“reverse lexicographic order” on A×B: 〈a1, b1〉 (R ∗ S) 〈a2, b2〉 if either b1Sb2 or b1 = b2 and a1Ra2.
Furthermore, we define ρ+ σ = it 〈A ∪B,R⊕ S〉 and ρ · σ = it 〈A×B,R ∗ S〉

There is work to be done to prove that everything here is well-defined, but it is not that difficult.

Definition 4.10 (Order Types of Common Structures). The order type of ω is denoted ω (indeed,
the order type of any ordinal 〈α,∈α〉 is denoted α). We let µ denote the order type of Q and λ denote
the order type of R.

Finally, for any linearly ordered structure 〈A,R〉 of type ρ, then define ρ∗ to be the isomorphism type
of it

〈
A,R−1

〉
. Then Z has order type ω∗ + ω 6= ω + ω∗. Notice that the addition of order types is

not commutative!

Theorem 4.10 (Properties of Order Types Arithmetic).

1. (ρ+ σ) + τ = ρ+ (σ + τ) and (ρ · σ) · τ = ρ · (σ · τ)

2. ρ · (σ + τ) = ρ · σ + ρ · τ .

3. ρ+ 0 = 0 + ρ = ρ

4. ρ · 1 = 1 · ρ = ρ

5. ρ · 0 = 0 · ρ = 0

Definition 4.11. Let α and β be ordinal numbers. Then define α+β to be the unique ordinal γ such
that α + β = γ and similarly let α · β = γ if α · β = γ. Thus, all properties of order type arithmetic
(associativity, distributivity, and the behavior of identity elements) are inherited by ordinal numbers.

There are many other properties that we could cover here, but the most important are the subtraction,
division, and logarithm theorems:

Theorem 4.11 (Subtraction Theorem). If α ∈ β (for ordinal numbers α and β), then there exists a
unique ordinal number δ (their difference) such that α+ δ = β.

Theorem 4.12 (Division Theorem). Let α and δ be ordinal numbers with δ nonzero. Then there is
a unique pair of ordinal numbers β and γ such that α = δ · β + γ and γ ∈ δ.

4.3 Cardinal Arithmetic

Definition 4.12 (Addition and Multiplication of Cardinal Numbers). If κ and λ are cardinal numbers
with associated sets K and L, we define κ+λ = card(K ∪L), κ ·λ = card(K×L), and κλ = card LK.

Theorem 4.13 (Properties of Cardinal Arithmetic). 1. κ+ λ = λ+ κ and κ · λ = λ · κ
2. κ+ (λ+ µ) = (κ+ λ) + µ

3. κ · (λ+ µ) = κ · λ+ κ · µ
4. κλ+µ = κλ · κµ, (κ · λ)µ = κµ · λµ, and (κλ)µ = κλ·µ

Theorem 4.14. The countable union of countable sets is countable. More generally, if every member
of a set A has cardinality κ or less, then card

⋃
A ≤ cardA · κ.

Theorem 4.15 (The Absorption Law of Cardinal Arithmetic). Let κ and λ be cardinal numbers, at
least one infinite and both nonzero. Then κ+ λ = κ · λ = max(κ, λ)
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4.4 The Continuum Hypothesis

So far, every single infinite set we have created either has cardinality ℵ0 or cardinality at least 2ℵ0 .
Thus, we ask the question: “is there a set with cardinality κ such that ℵ0 < κ < 2ℵ0”? The con-
tinuum hypothesis is the hypothesis that no such set exists: equivalently, any set of real numbers is
equinumerous to either the natural numbers or the real numbers.

The generalized continuum hypothesis is the theory that for each κ, there is no cardinal number strictly
between κ and 2κ. Gödel proved in 1939 that neither the generalized or normal continuum hypothesis
is disprovable in ZFC, and Paul Cohen also proved that even the normal continuum hypothesis is not
provable in ZFC. Thus, we say the continuum hypothesis is independent of ZFC. How this was proven
will be discussed later in our coverage of forcing.

4.5 Cofinality

Notice that any limit ordinal is the supremum of the set of all smaller ordinals. In other words,
λ =

⋃
λ for any limit ordinal λ. However, sometimes it is unnecessary to take all smaller ordinals:

sometimes we can take a proper subset of λ.

Definition 4.13 (Cofinality). The cofinality of a limit ordinal λ, denoted cf λ, is the smallest cardinal
κ such that λ is the supremum of κ smaller ordinals. The cofinality of a nonlimit ordinal is defined
to be 0 for 0 and 1 for any successor ordinal.

A set S for which λ = supS is called cofinal in λ. Of course, there are many such S – in particular,
since λ is cofinal in itself, cf λ ≤ cardλ.

Definition 4.14 (Regular and Singular Cardinals). A cardinal κ is called regular if cf κ = κ and
singular if cf κ < κ.

Theorem 4.16. ℵα+1 is a regular cardinal for every ordinal α. In contrast, for any limit ordinal λ,
cf ℵλ = cf λ.

The second part of the above result can be used to show that cf ℵω = cf ω = ℵ0 and cf ℵΩ = cf Ω = ℵ1,
so both are singular. We cannot prove that ℵλ is regular for any limit ordinal λ within our axioms (if
ℵλ is, we call it weakly inaccessible).

Theorem 4.17. For any ordinal λ, cf λ is a regular cardinal.

Theorem 4.18. If λ is an infinite cardinal, then cf λ is the least cardinal number κ such that λ can
be decomposed into the union of κ sets each having cardinality less than λ.

4.6 Inaccessible Cardinals

Consider a formula σ defined on the entire class of sets V. Given some set M , we convert this σ to a
new formula σM (called the relativization of σ to M) by replacing ∀x and ∃x by ∀x ∈M and ∃x ∈M ,
respectively. If σM is true, we say that σ is true in M and then M is a model of σ.

Suppose that λ is any limit ordinal greater than ω (the smallest example being ω · 2). Then Vλ is
actually a model of all the ZFC axioms except replacement. As an interesting side note, we can write
Vω·2 = Vω ∪P(Vω)∪PP(Vω) . . . . This set contains the real numbers, all functions from reals to reals,
and so on. Thus, it contains almost all the sets we actually care about.

Theorem 4.19. Not all of the replacement axioms are true in Vω·2.

Theorem 4.20. Not all of the replacement axioms are theorems of the other ZFC axioms.
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Proof. Any theorem of the Zermelo axioms must be true in any model of those axioms, such as Vω·2.
Thus, by the preceding result, not all replacement axioms are theorems of the other ZFC axioms.

This is a great example of the use of models to prove the independence of various axioms/theorem,
but we do discuss models in greater detail later.

Definition 4.5.3: A cardinal number κ is called inaccessible if:

1. κ is greater than ℵ0.

2. For any cardinal λ < κ, 2λ < κ.

3. κ is regular (see Def. 4.14)

One can prove that for any inaccessible cardinal number κ, Vκ is a complete model of the ZFC axiom.
However, one of the corollaries of Gödel’s second incompleteness theorem is that we cannot prove
from our axioms that such a model exists. Thus, the existence of inaccessible cardinals cannot be
proven using ZFC. Some people, like Alfred Tarski, proposed the following axiom in response: “for
any cardinal number there is a larger inaccessible cardinal number”. This is an example of a so-called
“large cardinal axiom”, of which there are many variants.

5 The Unreasonable Effectiveness of Set Theory

Set theory is not just pursued in pure mathematics for its own sake – it has numerous applications in
other areas of pure math. Here, we will list a few of the most accessible, to inspire your research.

5.1 Zorn’s Lemma Applied to Algebra

Here we give an example of the usual way one applies Zorn’s Lemma. Other results that follow from
the extremely useful lemma include (1) every proper ideal of a commutative ring (unital, of course)
is contained in a maximal ideal, (2) the intersection of all prime ideals in a commutative ring is the
set of nilpotent elements in the ring, and so on.

Theorem 5.1. If S0 is a linearly independent subset of a vector space V over K, then there exists a
basis B of V that contains S0. In particular, since the empty set is linearly independent, every vector
space has a basis.

Proof. Let
F = {S ⊂ V | S0 ⊂ S and S is linearly independent in V } (14)

Then F satisfies the assumptions of the Hausdorff maximality principle: clearly F is nonempty and
the union of any chain of linearly independent sets is linearly independent (since an infinite set is
linearly independent if any finite set is linearly independent).

Thus there exists a maximal element B in F . If a vector v is not in the span of B, then it is trivial
to show that B ∪ {v} is linearly independent and thus an element containing B in F , a contradiction.
Thus B is spanning and linearly independent, so it is a basis for V .

5.2 Strange Subsets of Rn

We simply list some of the most interesting results of transfinite induction:

Theorem 5.2. There exists a subset A of the plane with every horizontal section Ay = {x ∈ R |
(x, y) ∈ A} being dense in R and with every vertical section Ax = {y ∈ R | (x, y) ∈ A} having
precisely one element.
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Theorem 5.3. There exists a subset A of the plane R2 that intersects every straight line in exactly
two points.

Theorem 5.4. The space R3 is a union of disjoint circles, but the plane R2 is not.

Theorem 5.5. There is a countable partition {Si : i < ω} of R2 such that the distance between any
two different points of the same set Si is irrational.

Theorem 5.6. Every family U of pairwise disjoint open subsets of Rn is countable. Similarly, every
discrete subset S of Rn (that is, a set where each point in S has a neighborhood around it containing
no other point in S) is countable.

Proof. Define f : U − ∅ → Qn by choosing f(U) ∈ U ∩ Qn for every U ∈ U . Then f is one-to-one,
so U ≤ |Qn| + 1 = ω. Notice that a counterexample to the second part of the theorem would also
contradict the first, so by contraposition both follow.

5.3 Strange Real Functions

Theorem 5.7 (The Intermediate Value Theorem). Suppose we have any continuous function f .
Then, for every a < b and every number y between f(a) and f(b) there is an x ∈ (a, b) such that
f(x) = y.

Definition 5.1 (Darboux). Functions satisfying the above property are called Darboux. If furthermore
for every a < b and every number y there is an x ∈ (a, b) such that f(x) = y, we call f strongly Darboux.

Theorem 5.8. There exists a strongly Darboux function f : R→ R which is Darboux but everywhere
discontinuous.

Theorem 5.9. Let G be a family of real functions G ⊂ RR with |G| ≤ c. Then there exists a function
f : R→ R such that f + g is strongly Darboux for every g ∈ G.
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