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1 Functors

Definition 1 (Covariant Functor). A (covariant) functor F : C → D is a pair of maps Ob(C) → Ob(D)
and Mor(C) → Mor(D) such that the following conditions hold:

(1) F(idX) = idF(X) for all objects X ∈ C.

(2) Given any pair of morphisms f : X → Y and g : Y → Z, F(f ◦ g) = F(f) ◦ F(g).

Definition 2 (Contravariant Functor). A contravariant functor F : C → D is a pair of maps Ob(C) →
Ob(D) and Mor(C) → Mor(D) such that the following conditions hold:

(1) F(idX) = idF(X) for all objects X ∈ C.

(2) Given any pair of morphisms f : X → Y and g : Y → Z, F(f ◦ g) = F(g) ◦ F(f).

2 Natural Transformations

Definition 3 (Natural Transformation). Given two functors F ,G : C ⇒ D, a natural transformation (of
covariant functors) η : F → G is a family of morphisms ηX : F(X) → G(X) for each X in C, such that for
any f : X → Y , the following diagram commutes:

F(X) F(Y )

G(X) G(Y )

F(f)

ηX ηY

G(f)

Similarly, a natural transformation of contravariant functors can be defined by switching the direction of
the arrows F(f) and G(f), and keeping all the other requirements the same.

If η is a natural transformation, we say that the family of morphisms ηX are natural in X. If all of the
arrows ηX are furthermore isomorphisms, then we say that η is a natural isomorphism and write F ≃ G.
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2.1 Examples

Example 1 (Abelianization). Define a functor Ab : Grp → Grp as follows: for any group G ∈ Grp,
Ab(G) = G/[G,G] is the abelianization of G. Given any map f : G→ H in Grp, Ab(f) is defined as so: the

composition G
f→ H

πH→ H/[H,H] contains [G,G] in its kernel (since H/[H,H] is abelian), so there exists a
map G/[G,G] → H/[H,H], defined to be Ab(f), such that the following diagram commutes:

G H

G/[G,G] H/[H,H]

πG

f

πH

Ab(f)

The above diagram also shows that π is a natural transformation from id : Grp → Grp to Ab : Grp → Grp.

Example 2 (Double Dual). Let k be a field, and Vectk be the category of vector spaces over k. Define a
functor D : Vectk → Vectk as follows:

(1) Given any object V , D(V ) is the double dual V ∗∗ of V .

(2) Given any map f : V → W , D(f) = f∗∗ is the map constructed as follows: first, we define f∗ :
W ∗ → V ∗ by (φ : W → k) 7→ (φ ◦ f : V → k). Then we define D(f) = f∗∗ : V ∗∗ → W ∗∗

by φ : V ∗ → k) 7→ (φ ◦ f∗ : W ∗ → k); that is, a map φ : Hom(V, k) → k is sent to the map
f∗∗(φ) : Hom(W,k) → k given by T 7→ φ(T ◦ f).

One may check that the axioms for a functor holds. Furthermore, I claim that the family of morphisms ιV :
V → V ∗∗ given by sending v to the map Hom(V, k) → k given by φ 7→ φ(v) forms a natural transformation
from id to D. For this, one must check that the following diagram commutes:

V W

V ∗∗ W ∗∗

f

ιV ιW

f∗∗

For this, fix v ∈ V . Then ιW (f(V )) is the map is the map Hom(W,k) → k given by sending T : W → k
to T (f(v)). On the other hand, ιV (v) is the map Hom(V, k) → k given by sending T : V → k to T (v).
Then f∗∗(ιV (v)) is the map Hom(W,k) → k given by sending T : W → k to (ιV (v))(T ◦ f), but the latter
is just (T ◦ f)(v) = T (f(v)), exactly the same as ιW (f(v)). Hence ιW (f(v)) = f∗ ∗ (ιV (v)) = T 7→ T (f(v)).
Therefore, ιW ◦ f = f∗∗ ◦ ιV , exactly as desired.

2.2 Equivalence of Categories

Definition 4 (Isomorphism of Categories). An isomorphism of categories is a pair of functors F : C → D
and G : D → C such that GF = idC and FG = idD. This requirement can occur, but it is usually too strict.

Definition 5 (Equivalence of Categories). An equivalence of categories is a pair of functors F : C → D and
G : D → C such that GF ≃ idC and FG ≃ idD. This is a far more important requirement.

To give an idea of why Definition 5 is more important than Definition 4, consider the case of Setsfin, the
category of all finite sets and maps between them. In some sense, all the data of this category is encoded in
the category of Ordfin, the category of all finite ordinal numbers with the usual set-theoretic maps between
them. That is, given a set S with 2 elements and a set T with 3 elements, only the numbers 2 and 3 are
needed to characterize Hom(S, T ).

Yet notice that there exists no isomorphism of categories between Setsfin and Ordfin (for cardinality reasons
alone), but in fact there is an equivalence of categories between Setsfin and Ordfin; namely the obvious one
which sends any ordinal to itself, and any set to the unique ordinal of the same size.

Theorem 1 (Equivalence Criterion). A functor F : C → D gives an equivalence of categories iff it is
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(1) Full (that is, for any objects X,Y ∈ C, the map HomC(X,Y ) → HomD(F(X),F(Y )) is surjective).

(2) Faithful (that is, for any objects X,Y ∈ C, the map HomC(X,Y ) → HomD(F(X),F(Y )) is injective).

(3) Essentially surjective (given any object Y ∈ D, there exists an object X ∈ C such that F(X) ≃ Y ).

Proof. Suppose that F is an equivalence of categories C → D. Then there exists another function G : D → C
and natural isomorphisms α : idC

∼→ GF and β : idD
∼→ FG.

Now suppose that f, f ′ : X ⇒ Y are such that F(f) = F(f ′). Then GF(f) = GF(f ′), so by the naturality
of α, the following diagram commutes (note that the horizontal arrows are isomorphisms):

X GF(X)

Y GF(Y )

f ′f

αX

∼

GF(f)=GF(f ′)

αY

∼

Yet then f = α−1
Y ◦ GF(f) ◦ αX = α−1

Y ◦ GF(f ′) ◦ αX = f ′, so in fact F is faithful. Notice that identical
logic demonstrates that G is also faithful; we will use this fact later.

Now take a map g : F(X) → F(Y ); we will demonstrate that g = F(f) for some f : X → Y . Namely,
inspired by the above commutative diagram, define f : X → Y to be α−1

Y ◦G(g)◦αX . To show that g = F(f),
it suffices to show that G(g) = GF(f) since G is faithful. Yet, by naturality, αY ◦f = GF(f)◦αX ; by plugging
in the definition of f we have αY ◦ α−1

Y ◦ G(g) ◦ αX = G(g) ◦ αX = GF(f) ◦ αX ⇒ G(g) = GF(f) where the
final line follows from the fact that αX is an isomorphism and can therefore be canceled from both sides. In
conclusion, the map HomC(X,Y ) → Hom|bfD(F(X),F(Y )) is surjective for any X,Y so F is full.

Finally, F is obviously essentially surjective; for any object Y ∈ D, we have an isomorphism βY : Y ≃ FG(Y ).
Hence the result follows by assigning X = G(Y ).

Next, we will demonstrate the converse result: that if F is full, faithful, and essentially surjective then it is
an equivalence of categories. First, define G : D → C on objects by sending any object Y ∈ D to an element
X ∈ C with Y ≃ F(X). Notice that this also gives us a component βY : Y

∼→ FG(Y ) of β.

Next, we will define G on morphisms to make β natural. Namely, given g : Y → Y ′ in D, consider the
following commutative-by-definition diagram:

Y FG(Y )

Y ′ FG(Y ′)

g

βY

βY ′◦g◦β−1
Y

βY ′

Since F is full and faithful, there is a unique arrow G(Y ) → G(Y ′) such that FG(h) = βY ′ ◦ g ◦ β−1
Y . Define

this arrow to be G(h); then by uniqueness, G is a functor, and by construction this makes β a natural
isomorphism idD

∼→ FG.

All that remains is to find a natural isomorphism α : idC
∼→ GF . For this, fix an object X ∈ C. Then

consider βF(X) : F(X)
∼→ FGF(X); since F is full and faithful, there is a unique map f : X → GF(X) with

F(f) = βF(X). In fact, this map is also an isomorphism, since F is full and faithful, and we define αX := f .
The naturality of the αX follow immediately from the naturality of the βF(X). Hence we are done.
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3 Adjunctions

We begin with three competing definitions for what an “adjunction” is; we will see that all of these are
equivalent, giving us three ways to understand adjunctions. Then we will work with examples.

Definition 6 (Adjunctions with Units and Counits). An adjunction between categories C and D is a pair of
functors F : C → D and G : D → C together with natural transformations η : idC → GF (called the unit)
and ε : FG→ idD (called the counit) so that for all X ∈ C and Y ∈ D, the following diagrams commute:

F(X) FGF(X) G(Y ) GFG(Y )idF(X)

F(ηX)

εF(X)

idG(Y )

ηG(Y )

G(εY )

In this case, we write F ⊣ G and say that F and G are adjoint functors; more precisely, F is left adjoint to
G and G is right adjoint to F .

Definition 7 (Adjunctions with Just Units). Equivalently, an adjunction between categories C and D is a
pair of functors F : C → D and G : D → C together with a natural transformations η : idC → GF (called
the unit) such that the following universal property holds: for any X ∈ C and Y ∈ D, there exists a unique

map f̂ : F(X) → Y , called the adjunct or transpose of f , such that f = G(f̂) ◦ ηX .

Definition 8 (Adjunctions as Isomorphisms of Hom-Sets). Equivalently, an adjunction between categories
C and D is a pair of functors F : C → D and G : D → C together with a bijection

HomD(F(X), Y )
∼→ HomC(X,G(Y ))

which is natural inX and Y ; i.e., HomD(F(X), ) ≃ HomC(X,G( )) and HomD(F( ), Y ) ≃ HomC( ,G(Y ))
are natural isomorphisms for each X and Y . In this case, the image of f : F(X) → Y under the bijection is

a map f̂ : X → G(Y ) called the adjunct or tranpose of f .

This confusing mess is resolved by the following theorem.

Theorem 2 (Equivalence of Definitions). All three definitions for adjunctions (6, 7, and 8) are equivalent.

The proof follows from 3 lemmas.

Lemma 3. Suppose that F : C → D and G : D → C form an adjunction F ⊣ G in the sense of Definition
6; that is, there is a unit η and counit ε. Then if X ∈ C and Y ∈ D and f : X → G(Y ) is a morphism in

C, then there is a unique morphism f̂ : F(X) → Y in D such that the following diagram commutes:

GF(X)

X G(Y )

G(f̂)
ηX

f

In particular, F and G form an adjunction in the sense of Definition 7.

Proof. Define f̂ to be the composition map F(X)
F(f)→ FG(Y )

εY→ Y ; that is, f̂ = εY ◦ F(f). Then

G(f̂) = G(εY ) ◦ GF(f), so G(f̂) ◦ ηX = G(εY ) ◦ GF(f) ◦ ηX . Since η is a natural transformation, this

is equal to G(εY ) ◦ ηG(Y ) ◦ f . But G(εY ) ◦ ηG(Y ) = idG(Y ) as in Definition 6, so G(f̂) ◦ ηX = idG(Y ) ◦f = f .

Next, we will show that f̂ = εY ◦ F(f) is forced by the condition G(f̂) ◦ ηX = f . For this, notice that

G(f̂) ◦ ηX = f ⇒ FG(f̂) ◦ F(ηX) = F(f) ⇒ εY ◦ FG(f̂) ◦ F(ηX) = εY ◦ F(f).

But by naturality, εY ◦ FG(f̂) = f̂ ◦ εF(X), so

εY ◦ FG(f̂) ◦ F(ηX) = εY ◦ F(f) ⇒ f̂ ◦ εF(X) ◦ F(ηX) = εY ◦ F(f) ⇒ f̂ ◦ idF(X) = εY ◦ F(f)

where the final implication follows from the commutative diagram in Definition 6. Yet then f̂ = f̂ ◦ idF(X) =
εY ◦ F(f) is the desired proof of uniqueness, so we are done.
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Lemma 4. Suppose that F : C → D and G : D → C form an adjunction F ⊣ G in the sense of Definition
7. Then they form an adjunction in the sense of Definition 8.

Proof. Take X ∈ C and Y ∈ D and define the map ϕXY : HomD(F(X), Y ) → HomC(X,G(Y )) by the
formula ϕXY (g) = G(g) ◦ ηX . Recall that by the universal mapping property in Definition 7, for any given

f : X → G(Y ), there is exactly one map f̂ such that f = ϕ(f̂). Hence ϕXY is a bijection, so we have a
bijection HomD(F(X), Y ) ≃ HomC(X,G(Y )). Now, it suffices to show that ϕXY is natural in X and Y .

First, we will show ϕX : HomD(F(X), ) ≃ HomC(X,G( )) is a natural isomorphism for each X. There-
fore, take a map ψ : Y → Y ′. The goal is to show that the following diagram is commutative:

HomD(F(X), Y ) HomC(X,G(Y ))

HomD(F(X), Y ′) HomC(X,G(Y ′))

ψ∗

ϕXY

(G(ψ))∗

ϕXY ′

Therefore, choose f : F(X) → Y . The desired result is achieved easily by applying the naturality of η.

(G(ψ))∗(ϕXY (f)) = G(ψ) ◦ (G(f) ◦ ηX)

= G(ψ ◦ f) ◦ ηX
= ϕXY (ψ ◦ f)
= ϕXY (ψ

∗(f)).

Lastly, we will show ϕ Y : HomD(F( ), Y ) ≃ HomC( ,G(Y )) is a natural isomorphism for each Y . There-
fore, take a map ψ : X → X ′. The goal is to show that the following diagram is commutative:

HomD(F(X ′), Y ) HomC(X
′,G(Y ))

HomD(F(X), Y ) HomC(X,G(Y ))

(F(ψ))∗

ϕX′Y

ψ∗

ϕXY

Therefore, choose f : F(X ′) → Y . The desired result is achieved easily by applying the naturality of η.

ψ∗(ϕX′Y (f)) = (G(f) ◦ ηX′) ◦ ψ
= G(f) ◦ GF(ψ) ◦ ηX
= G(f ◦ F(ψ)) ◦ ηX
= ϕXY ((F(ψ)∗)(f)).

Hence we are done.

Lemma 5. Suppose that F : C → D and G : D → C form an adjunction F ⊣ G in the sense of Definition
8. Then they form an adjunction in the sense of Definition 6.

Proof. Consider the bijection ϕXF(X) : HomD(F(X),F(X))
∼→ HomC(X,GF(X)); define ηX to be the image

(the transpose) of the identity map idF(X). Similarly, consider the bijection ϕG(Y )Y : HomD(FG(Y ), Y )
∼→

HomC(G(Y ),G(Y )); define εY to be the preimage (the transpose) of the identity map idG(Y ).

First, we will show that both η and ε are natural using the fact that ϕXY is natural in X and Y . For this,
it is worth recounting what “naturality in X and Y ” means. Explciitly, naturality in X means that given
a map g : X → X ′, and any map f : X ′ → G(Y ), ϕ−1

XY (f ◦ g) = ϕ−1
X′Y (f) ◦ F(g). Similarly, naturality in Y

means that given a map g : Y → Y ′, and any map f : F(X) → Y , ϕXY ′(g ◦ f) = G(g) ◦ ϕXY (f).

Then, suppose that we have a map φ : X → X ′. We wish to show that the following square commutes:
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X GF(X)

X ′ GF(X ′)

φ

ηX

GF(φ)

ηX′

Firstly, notice that by the naturality in Y of ϕXY , we have (dropping the XY in ϕXY for convenience),

ϕ(F(φ)) = ϕ(F(φ) ◦ idF(X)) = GF(φ) ◦ ϕ(idF(X)) = GF(φ) ◦ ηX .

On the other hand, by the naturality in X of ϕXY , we have ϕ
−1(ηX′ ◦φ) = ϕ−1(ηX′)◦F(φ) = idX′ ◦F(φ) =

F(φ); applying ϕ again, we have ηX′ ◦ φ = ϕ(F(φ)) = GF(φ) ◦ ηX , proving the desired naturality. One can
dually prove the naturality of ε by citing naturality in X and then naturality in Y .

Finally, it remains to show that η and ε satisfy the commutative diagrams outlined in Definition 6. Namely,
we must have εF(X) ◦ F(ηX) = idF(X) and G(εY ) ◦ ηG(Y ) = idG(Y ). For this, notice that by naturality in X,

idF(X) = ϕ−1(ϕ(idF(X))) = ϕ−1(ηX) = ϕ−1(idGF(X) ◦ηX) = ϕ−1(idGF(X)) ◦ F(ηX) = εF(X) ◦ F(ηX).

Similar reasoning holds for the other equality; namely, by the naturality of ϕXY in Y ,

idG(Y ) = ϕ(ϕ−1(idG(Y ))) = ϕ(εY ) = ϕ(εY ◦ idF(X)) = G(εY ) ◦ ϕ(idFG(Y )) = G(εY ) ◦ ηG(Y ).

Together, these three lemmas prove Theorem 2.

Broadly speaking, it is easier to think of adjunctions using the definition in terms of natural isomorphisms
of hom-sets. However, it is usually easier to verify that constructions form adjunctions using the unit and
counit or unit definitions. Therefore, all three definitions are genuinely helpful in different situations.

3.1 Examples of Adjunctions

Example 3 (Product-Hom Adjunction). Define F : Sets → Sets by F(X) = X × Z and G : Sets → Sets
by G(Y ) = Hom(Z, Y ) for a fixed set Z, with the obvious operations on morphisms (which in this case are
just set-theoretic functions). We will show that there exists an adjunction F ⊣ G using two definitions, to
illustrate how the isomorphism-of-hom sets definition can be more enlightening, but proving the conditions
for the adjunction is easier with the definition using the unit and/or the counit.

Isomorphism of Hom-Sets: Define a map ϕ : Hom(X ×Z, Y ) → Hom(X,Hom(Z, Y )) as follows: given a
map f : X × Z → Y , define ϕ(f) : X → Hom(Z, Y ) given by sending x to the map z 7→ f(x, z). To see why
ϕ is a bijection, consider ψ : Hom(X,Hom(Z, Y )) → Hom(X × Z, Y ) given by sending g : X → Hom(Z, Y )
to the map (x, z) 7→ g(x)(z). One may easily verify that ϕ and ψ are two-way inverses, so ϕ is bijective.

Next, we must show that ϕ is natural is X and Y . Namely, take a map ρ : Y → Y ′. The goal is to show
that the following diagram is commutative:

Hom(X × Z, Y ) Hom(X,Hom(Z, Y ))

Hom(X × Z, Y ′) Hom(X,Hom(Z, Y ′))

ρ∗

ϕXY

(G(ρ))∗

ϕXY ′

Now choose f : X × Z → Y . Then ρ∗(f) = ρ ◦ f , so ϕXY ′(ρ∗(f)) is the map X → Hom(X,Y ) given by
sending x to the map z 7→ ρ(f(x, z)). On the other hand, ϕXY (f) is the map given by sending x to the map
z 7→ f(x, z). Then, G(ρ) is the map Hom(Z, Y ) → Hom(Z, Y ′) given by sending f to ρ◦f , so G(ρ)∗(ϕXY (f))
is the map given by sending x to the map z 7→ f(x, z), and then sending that map to its composition with
ρ; in summary, G(ρ)∗(ϕXY (f)) is the map given by sending x to the map z 7→ ρ(f(x, z)), exactly the same
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as ϕXY ′(ρ∗(f)). Hence we have shown naturality in Y .

Similarly, take a map ρ : X → X ′. The goal is to show that the following diagram is commutative:

Hom(X ′ × Z, Y ) Hom(X,Hom(Z, Y ))

Hom(X × Z, Y ) Hom(X,Hom(Z, Y ))

F(ρ)∗

ϕX′Y

ρ∗

ϕXY

Now choose f : X ′ × Z → Y . Then F(ρ) is the obvious map X × Z → X ′ × Z given by (x, z) 7→ (ρ(x), z),
so F(ρ)∗(f) = f ◦ F(ρ). Then ϕXY (F(ρ∗(f))) = ϕXY (f ◦ F(ρ)) is the map given by sending x to the map
z 7→ f(F(ρ)(x, z)) = f(ρ(x), z). On the other hand, ϕX′Y (f) is the map given by sending x′ to the map
z 7→ f(x′, z), so ρ∗(ϕX′Y (f)) = ρ ◦ ϕX′Y (f) is the map z 7→ f(ρ(x), z), exactly as desired. Hence we have
shown naturality in X, so we have shown naturality in both X and Y , so we are done.

Unit: Define a natural transformation η : idC → GF by defining ηX : X → Hom(Z,X × Z) to be given by
x 7→ (z 7→ (x, z)). First, we must show that ηX is natural. Therefore, choose ρ : X → X ′. Then

X Hom(Z,X × Z)

X ′ Hom(Z,X ′ × Z)

ηX

ρ GF(ρ)

ηX′

must commute for η to be a natural transformation. Now, GF(ρ) ◦ ηX is the map given by sending x to
the map GF(ρ)(z 7→ (x, z)) = z 7→ F(ρ)(x, z) = z 7→ (ρ(x), z). Yet ηX′ ◦ ρ is the map given by sending x
to ρ(x), and then sending ρ(x) to the map z 7→ (ρ(x), z). In other words, both GF(ρ) ◦ ηX and ηX′ ◦ ρ are
given by sending x to z 7→ (ρ(x), z). Therefore η is indeed a natural transformation. To conclude the proof
that F ⊣ G, it suffices to show that η has the UMP in Definition 7.

Take sets X,Y , and a morphism f : X → Hom(Z, Y ). We seek to show that there exists a unique map

f̂ : X × Z → Y such that G(f̂) ◦ ηX = f . This follows from the below equivalences:

G(f̂) ◦ ηX = f ⇔ G(f̂) ◦ ηX(x) = f(x) for all x ∈ X ⇔ G(f̂)(z 7→ (x, z)) = f(x) ⇔ z 7→ f̂(x, z) = f(x).

That is, f̂ : X × Z → Y is uniquely determined by the condition f̂(x, z) = f(x)(z), and in this case we

indeed have G(f̂) ◦ ηX = f . Therefore η has the desired UMP, and we are done.

Example 4 (Free-Forgetful Adjunction). This particular adjunction appears in numerous forms: between
the category of sets and vector spaces, the category of sets and groups, even the category of graphs and
the category of (small) categories; here, we will focus on the specific adjunction between Sets and Vectk.
Namely, the functor F : Sets → Vectk is given by sending a set S to the vector space F(S) freely generated
over S; that is, the set of all finite formal k-linear combinations of elements of S, with the obvious vector
space structure. The functor G : Vectk → Sets is given by sending a vector space V to its underlying set,
“forgetting” the vector space structure. We will use the unit definition to show that F ⊣ G.

Define a natural transformation η : idSets → GF by defining ηX : X → GF(X) to be the natural injection;
that is, sending x ∈ X to the basis element 1x ∈ F(X), and then to the element 1x = G(1x). First, we must
show that η is natural; choose ρ : X → X ′. Then GF(ρ) is the set-theoretic function which underlies the
k-linear map F(ρ) given by extending ρ k-linearly from the basis X of F(X). In particular, GF(ρ) ◦ ηX is

the map given by x
ηX7→ 1x

GF(ρ)7→ 1ρ(x). On the other hand, ηX′ ◦ ρ is the map given by x
ρ7→ ρ(x)

ηX′7→ 1ρ(x).
Hence GF(ρ) ◦ ηX = ηX′ ◦ ρ, so η is natural, as desired.

To conclude the proof that F ⊣ G, it suffices to show that η has the UMP in Definition 7. Take a space X
and a vector space V , and a morphism f : X → G(V ). We seek to show that there exists a unique morphism

f : F(X) → V such that G(f̂) ◦ ηX = f . This statement is obvious when written out in plain English: it
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amounts to the fact that given a map f of the basis X of the vector space F(X) into another vector space

V , there is a unique k-linear map f̂ extending v to all of F(X). Hence we are done.

Example 5 (Tensor-Hom Adjunction). The final adjunction which we will examine is called the tensor-hom
adjunction, and is very important in homological algebra (it is the foundation of the relationship between
the Ext and Tor functions, for example). It is certainly the most difficult of the examples to understand, so
do not feel bad if you need to skip it; the first two examples are plenty to get the idea.

Let us begin by recounting the universal property which defines the tensor product up to unique isomorphism
(I will not prove this; it is proven in any good book on algebra, such as Dummit and Foote). Let A be a
commutative ring (with unity), and X and Y be A-modules. Then the tensor product X ⊗A Y and the
natural map φ : X × Y → X ⊗A Y (given by (x, y) 7→ x⊗ y) satisfy the following universal property: given

any A-bilinear map f : X × Y → Z, there exists a unique A-linear map f̃ : X ⊗ Y → Z such that f = f̃ ◦φ.

Now let A and B be commutative rings. Recall that ModA is the category of A-modules (and similarly
ModB is the category of B-modules). Fix an (A,B)-module Z. Then define the functor F : ModA →
ModB by F(X) = X ⊗A Z (with the obvious operation on morphisms). Similarly, define the functor
G : ModB → ModA given by F(Y ) = HomB(Z, Y ). Then we have an adjunction F ⊣ G.

This adjunction is best understood as a isomorphism

HomB(X ⊗A Z, Y ) ≃ HomA(X,HomB(Y, Z))

natural in X and Y . However, proving that it is an adjunction is especially easy using the unit/counit
definition of adjunctions, so this gives a chance to show the utility of our third definition of adjunctions.

Define the unit η : idModA
→ GF as follows: given an A-module X, let the map ηX : X → HomB(Z,X⊗AZ)

be given by sending x ∈ X to the B-module homomorphism given by ηX(x)(z) = x⊗ z. Similarly, we define
the unit ε : FG → idModB

as follows: given a B-module Y , let the map εY : HomB(Z, Y ) ⊗A Z → Y be
given by evaluation; that is, given ϕ ⊗ z, ε(ϕ ⊗ z) = ϕ(z) (and we linearly extend since the simple tensors
span the entire tensor product). It is left as an exercise to the reader to prove that η and ε are indeed natural.

Now, the unit and counit commutativity conditions can be computed easily. Namely, given a A-module
X, to show that the map εF(X) ◦ F(ηX) : X ⊗A Z → HomB(Z,X ⊗A Z) ⊗A Z → X ⊗A Z is equal to
idF(X), it suffices to show the result on simple tensors of X ⊗A Z. Yet we immediately have εF(X) ◦
F(ηY )(x ⊗ z) = ηX(x)(z) = x ⊗ z, exactly as desired. Similarly, the map G(εY ) ◦ ηG(Y ) : HomB(Z, Y ) →
HomB(Z,HomB(Z, Y ) ⊗A Z) → HomB(Z, Y ) is computed as so: given ϕ ∈ HomS(X,Z), G(εY ) ◦ ηG(Y )(ϕ)
is the map defined by G(εY ) ◦ ηG(Y )(z) = εY (ϕ⊗ z) = ϕ(z), whence G(εY ) ◦ ηG(Y )(ϕ) = ϕ, as desired.
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