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1 Introduction

One can summarize number theory as the study of the integers. Number theory incorporates ideas from
many different areas of math, and is notorious for inspiring difficult proofs of results with simple statements.
These notes will rely on ring-theoretic language, so it is helpful to have taken a first algebra course. Though
we will define most of the ring-theoretic language we use, basic facts about groups will not be proven here
(instead, check out my notes on Group Theory).

These notes draw on many sources, crudely cited where they are used, but roughly this is a summary of
what I learned in Math 152 at Stanford and Baker’s A Comprehensive Course on Number Theory.

2 Divisibility and Congruences in Z
First, let’s discuss the basic structure of the integers, especially with regards to prime factorization.

2.1 Rings and Integers

Definition 1 (Abelian Group). An abelian group (G,+) (denoted by G by abuse of notation) is a set G
equipped with an binary operation + such that:

1. There exists an element 0 ∈ G such that a+ 0 = 0 + a = a for all a ∈ G.

2. For any element a ∈ G, there exists −a ∈ G such that a+ (−a) = 0 ∈ G.

3. For any elements a, b, c ∈ G, (a+ b) + c = a+ (b+ c) (associativity) and a+ b = b+a (commutativity).

For example, the integers Z form an abelian group under the usual definition of addition.

Definition 2 (Ring). A ring (R,+, ·) (denoted by R by abuse of notation) is an abelian group (R,+)
equipped with an additional operation · satisfying the following axioms:

1. There exists an element 1 ∈ R such that a · 1 = 1 · a = a.

2. Given any elements r, s, t ∈ R, (r · s) · t = r · (s · t) (assocativity).

3. Given any elements a, b, c, a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c (distributivity).

All of our rings are furthermore commutative, so a · b = b · a.

For example, the integers Z form a ring under the usual definitions of addition and multiplication.

Definition 3 (Homomorphism). Given two rings R and S, a function φ : R→ S is called a ring homomor-
phism if φ(r + r′) = φ(r) + φ(r′) and φ(rr′) = φ(r)φ(r′) for all r, r′ ∈ R, and furthermore if φ(1) = 1.

Definition 4 (Isomorphism). A homomorphism φ : R→ S is called an isomorphism of rings if there exists
a homomorphism ψ : S → R such that φ ◦ ψ = idS and ψ ◦ φ = idR. Equivalently, an isomorphism is a
bijective homomorphism.

Definition 5 (Image). Given a homomorphism of rings φ : R→ S, the image of φ is the set

imφ = {φ(r) | r ∈ R} ⊆ S.

Definition 6 (Integral Domain). A ring R is called an integral domain if ab = 0 implies that a = 0 or b = 0.
Notice that if R is an integral domain, then ac = bc implies that either a = b or c = 0.

For example, the ring of integers is an integral domain.

Definition 7 (Unit). An element u ∈ R is a unit of R if there exists v ∈ R such that uv = vu = 1. The set
of all units of a commutative ring R forms an abelian group, denoted R×.
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For example, the set of units in Z is simply {−1, 1}. This forms a group isomorphic to C2.

Definition 8 (Field). In any nonzero ring R, 0 cannot be a unit, since for any r ∈ R,

0 · r = (0 + 0) · r = 0 · r + 0 · r ⇒ 0 = 0 · r.

However, if every nonzero element is a unit, then the ring R is called a field. Notice that any field is an
integral domain, but not every integral domain is a field.

Definition 9 (Divides). Given elements a, b ∈ R, we say that a divides b (and write a | b) if there exists
c ∈ R such that ac = b.

Definition 10 (Prime). An element p ∈ R is called prime if p | ab implies p | a or p | b.

Definition 11 (Irreducible). An element i ∈ R is called reducible if there exist non-units j, k ∈ R such that
i = jk. An element which is not reducible is called irreducible.

In fact, with some investigation, one might discover that, in the integers, the prime elements and the
irreducible elements are the same. Indeed, we will prove that Z is a unique factorization domain (UFD),
which implies that the prime and irreducible elements are the same. However, unfortunately, this is not true
in general. Let’s take a look at an example.

Proposition 1. Not all irreducible elements are prime in the ring Z[
√
−5] = {a+ b

√
−5 | a, b ∈ Z}.

Proof. Notice that 2 · 3 = 6, so 2 divides 6. To see why 2 is irreducible, consider a map which describes the
“size” of an element in Z[

√
−5], called the norm map:

N(a+ b
√
−5) = a2 + 5b2.

It is not difficult to check via computation that N(αβ) = N(α)N(β) for any α, β ∈ Z[
√
−5]. Therefore, if

αβ = 2, then N(α)N(β) = N(αβ) = N(2) = 4. Either N(α) and N(β) are both 2, or one of N(α) and N(β)
is 1, and the other is 4. Yet it is not difficult to check, from the formula, that there are no elements of norm
2. Therefore one of N(α) and N(β) is 1. Yet the only elements with norm 1 are 1 and −1, which are both
plainly units. Therefore, 2 cannot be written as the product of two non-units, so it is irreducible.

On the other hand, 6 is equal to (1 +
√
−5)(1−

√
−5). If 2 were prime, then it would divide at least one of

these two elements. Yet it does not divide either, so it isn’t prime. Thus, 2 is irreducible and not prime.

Notice that the reason why this failed had something to do with the fact that we could write 6 as the
product of irreducible elements in two different ways. Yet in Z, each number can be uniquely expressed as
the product of primes; we call this unique factorization, and it obstructs the separation of irreducible and
prime elements.

2.2 Ideals

Definition 12 (Ideal). An ideal I of a ring R is a subgroup of the abelian group (R,+) which is also closed
under scaling by R; that is, if i ∈ I and r ∈ R, then ri ∈ I.

For example, the set of multiples of 2 is an ideal of Z.

Definition 13 (Generated Ideals). The ideal (S) generated by a set S ⊆ R is the smallest ideal containing
S; explicitly, it can be described as that is, (S) is the set of all finite R-linear combinations of elements in S

(S) =

{
n∑
i=1

risi

∣∣∣∣∣ n ∈ Z, ri ∈ R, si ∈ S

}
.

If S is a finite set {a1, . . . , an}, we abuse notation and abbreviate ({a1, . . . , an}) by (a1, . . . , an).

Note: When we say that (S) is the “smallest ideal containing S”, we are not making a statement about
cardinality (often (S) has the same infinite cardinality as many other ideals containing S), but we mean that
every ideal containing S must contain (S). In other words, (S) is minimal under the preorder of inclusion.
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Definition 14 (Sum and Product of Ideals). Suppose I and J are ideals of R. Then

I + J =

{
n∑
k=1

ikjk

∣∣∣∣ n ∈ N, ik ∈ I, jk ∈ J

}
IJ =

{
ij

∣∣∣∣ i ∈ I, j ∈ J}
Notice that I + J = (I ∪ J) is the smallest ideal containing I and J .

Definition 15 (Maximal). An ideal I of R is called maximal if I ( R and J ) I implies J = R.

Definition 16 (Prime). An ideal I of R is called prime if ab ∈ I implies a ∈ I and b ∈ I.

Proposition 2. Any maximal ideal is prime.

Proof. Suppose that m is maximal and ab ∈ m. Then since m is maximal and (a,m) ⊇ m, either (a,m) = R
or (a,m) = m. In the former case, b ∈ a−1m = m, and in the latter case a ∈ m, so either way one of a or b is
contained in m. Hence m is prime.

Definition 17 (Associates). Two elements a, b ∈ R are said to be associates if there exists a unit u such
that au = b. Notice that this definition is symmetric; if au = b, then a = bu−1. Associated elements are
considered “the same” in many senses; in particular, if R is an integral domain, (a) = (b) if and only if a
and b are associates. Also, a divides b and b divides a if and only if a and b are associates.

In the ring of integers Z, two elements are conjugate if and only if they differ by a sign.

2.3 UFDs, PIDs, and Euclidean Domains

In this section, we will review three important conditions on the structure of rings.

Definition 18 (UFD). An integral domain R is called a unique factorization domain (UFD) if any r ∈ R
can be expressed as up1 · · · pn for some unit u and irreducible elements p1, . . . , pn, in a unique way. In other
words, in a UFD, if r = up1 · · · pn = vq1 · · · qm (where u, v are units and both the pi and qi are irreducible),
then n = m and there exists a reordering of the qi such that pi and qi are associated for each i.

By grouping together associated primes, we can write any element r ∈ R uniquely in the form

upe11 · · · penn

where the pi are pairwise non-associated. This is often referred to as the prime factorization of r (even
though the factorization above is also technically a factorization of r into primes).

You might notice that I say “prime factorization” instead of “irreducible factorization”. This is no issue, as
the following result shows:

Proposition 3. In a UFD, prime and irreducible elements are the same.

Proof. In fact, in an integral domain any prime is irreducible. Proving that any irreducible element i is
prime amounts to taking the prime factorization of ab and noting that by unique factorization i must be
conjugate to one of the factors in a (hence it divides a) or one of the factors in b (hence it divides b).

Definition 19 (PID). An integral domain R is called a principal ideal domain (PID) if every ideal I of R
is principal ; that is, of the form (r) for some r ∈ R.

It is not difficult to show that primes and irreducibles are the same in PIDs as well, via the following
argument:

Proposition 4. In a PID, any irreducible element i generates a maximal ideal and hence a prime ideal.
Since (p) is prime if and only if p is a prime element, this implies that i is a prime element.
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Definition 20 (Euclidean Domain). Suppose R is an integral domain. Then a function N : R \ {0} → Z≥0

is called Euclidean if for any a, b ∈ R with b nonzero, there exist q, r ∈ R such that

a = bq + r

and either N(r) < N(b) or r = 0. If R is a ring and there exists a Euclidean function on R, then we call R
a Euclidean domain.

Theorem 5. All Euclidean domains are PIDs.

Proof. Suppose I is an ideal of a Euclidean domain R with Euclidean function N . Then let b ∈ I be such
that N(b) is minimal among all nonzero elements of I. I claim that I = (b). To see why, we will prove that
(b) ⊆ I and I ⊆ (b). The first of these is easy: since b ∈ I, (b) ⊆ I.

On the other hand, suppose a ∈ I. Then by the properties of Euclidean functions we may write a = bq + r
for some q, r with r = 0 or N(r) < N(b). But r = a− bq ∈ I, and b has minimal norm among all elements
of I, so the latter case is impossible. Hence r = 0. Therefore a = bq ∈ (b), so indeed I ⊆ (b).

Theorem 6. All PIDs are UFDs.

Proof. Let R be a principal ideal domain, and consider r ∈ R. First, we will show that r can be factored into
a product of irreducibles. Suppose, for the sake of contradiction, that r cannot be factored into a product
of irreducibles. Then clearly r cannot be irreducible itself, so r = r1r

′
1 for some nonunits r1, r

′
1. But then at

least one of r1 and r′1 cannot be factored into a product of irreducibles (since otherwise we could multiply
the factorizations) – assume without loss of generality that it is r1.

Again, r1 cannot be irreducible, so r1 = r2r
′
2 for some nonunits r2, r

′
2 where (without loss of generality) r2

cannot be factored into a product of irreducibles. We can repeat this process to get a sequence

r1, r2, . . .

of elements of R such that ri+1 | ri and ri and ri+1 are not associates for every i. Then we have a strictly
ascending chain of ideals

(r1) ( (r2) ( · · ·
which I claim is impossible. To see why, verify that

⋃∞
i=1(ri) is an ideal, and thus is generated by r′ ∈ R.

But by the definition of a union, r′ ∈ (rn) for some n. But then (rn) ⊇ (r′) =
⋃∞
i=1(ri) ⊇ (rn+1), which is

impossible in a strictly ascending chain (rn+1) ) (rn). Hence our assumption that r cannot be factored was
incorrect, and we know that factorizations exist in a PID.

Hence it suffices to show that factorizations in a PID are unique. For this, we will use the fact that any
irreducible element of a PID is prime, proven earlier. Now, suppose we have two factorizations, as so:

r = up1 · · · pr = vq1 · · · qs.

Since p1 divides q1 · · · qs, and it is prime since it is irreducible, p1 divides qi for some i. But qi is irreducible,
so p1 can only divide qi if p1 and qi are associates. Hence by adjusting units, we can cancel p1 and qi to get
two factorizations with strictly fewer terms, and by repeating this process we may pair up associate pi and
qj until there are none left, as desired.

Proposition 7. The ring of integers Z is a Euclidean domain.

Proof. The function N : Z \ {0} → Z≥0 given by N(r) = |r| is Euclidean by the division algorithm.

Corollary 7.1. The ring of integers is a principal ideal domain and a unique factorization domain.

Definition 21 (Greatest Common Divisor). Since Z is a PID, given any set of integers S, the ideal (S) is
principal with generator d. This d is unique up to sign, and is called the greatest common divisor of S, since
it divides all the elements of S and any integer dividing all the elements of S divides d. We denote d by
gcd(S). Abusing notation, we also write (a, b) for the greatest common divisor of a and b. Also, if (a, b) = 1,
we say a and b are coprime.
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2.4 Modular Arithmetic

Definition 22 (Equivalence Relation). An equivalence relation ∼ on a set S is a binary relation satisfying

1. a ∼ a for any a ∈ S (reflexivity)

2. a ∼ b implies b ∼ a for any a, b ∈ S (symmetry)

3. a ∼ b and b ∼ c implies b ∼ c for any a, b, c ∈ S (transitivity)

For example, given a family F of sets, we might say that S ∼ T iff there exists a bijection from S to T .
This gives an equivalence relation (the equivalence relation of cardinality) on F .

Definition 23 (Equivalence Class). Given a set S with equivalence relation ∼, the equivalence class of s is

[s] = {t ∈ S | s ∼ t}.

Notice that t ∈ [s]⇔ [t] = [s], and hence the set of all equivalence classes forms a partition of S.

Proposition 8. Partitions on S and equivalence relations on S are in one-to-one correspondence as follows:

1. A partition {Sλ}λ∈Λ of S induces the equivalence relation s ∼ t iff s, t ∈ Sλ for some λ ∈ Λ.

2. An equivalence relation ∼ on S induces a partition by considering the equivalence classes of ∼.

Definition 24 (Quotient Ring). If R is a ring with ideal I, the quotient R/I is the ring formed as follows:

1. Define an equivalence relation ∼ on R by r ∼ s iff r − s ∈ I.

2. Let the elements of R/I be the equivalence classes of R under ∼.

3. Define addition on R by [a] + [b] = [a+ b].

4. Define multiplication on R by [a][b] = [ab].

One can verify that the notions of addition and multiplication are well-defined, and furthermore it is easy
to check that R/I satisfies the ring axioms. Hence R/I is indeed a ring, called a quotient ring.

Definition 25 (Kernel). The kernel of a ring homomorphism φ : R→ S is the set

kerφ = {r ∈ R | φ(r) = 0}.

It is not difficult to verify that this is an ideal.

For example, the natural homomorphism π : R→ R/I given by r 7→ [r] has kernel I.

Proposition 9. A ring homomorphism φ : R→ S is injective iff kerφ = {0}.

Proof. Necessarily, φ(0) = 0. If φ : R→ S is injective, then the only element of R which can map to 0 is 0,
so necessarily kerφ = {0} in this case. On the other hand, suppose φ : R → S is not injective. Then there
exist distinct elements r1 and r2 such that φ(r1) = φ(r2). But then φ(r1 − r − 2) = φ(r1) − φ(r2) = 0, so
r1 − r2 is a nonzero element of kerφ (whence kerφ 6= {0}).

Definition 26 (Ring of Integers mod n). The ring of integers mod n is the quotient ring Z/nZ, where
nZ = (n) = {nk | k ∈ Z}. The elements of Z/nZ are simply the equivalence classes [0], [1], [2], . . . , [n − 1],
called the residue classes mod n. Often by abuse of notation we drop the brackets.

Definition 27 (Equivalent Modulo n). Two integers a and b are said to be equivalent modulo n if [a] =
[b] ∈ Z/nZ. In this case we write a ≡ b mod n.
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Modular arithmetic is often helpful for finding solutions to equations, or proving that no solutions exist. For
example, consider the number 23487203. Can it be written as the sum of two perfect squares?

Even without using a computer, the answer is clearly “no”. To see why, notice that if there exist x and y
such that x2 + y2 = 23487203, then reducing modulo 4 we have

x2 + y2 ≡ 23487203 ≡ 3 mod 4.

But it is easy to check that 02 ≡ 0 mod 4, 12 ≡ 1 mod 4, 22 ≡ 0 mod 4, and 32 ≡ 1 mod 4. Hence the only
possible values for sums of squares mod 4 are 0 + 0 ≡ 0 mod 4, 0 + 1 ≡ 1 mod 4, or 1 + 1 ≡ 2 mod 4 – 3 mod
4 is not the sum of two squares. Hence 23487203 is not the sum of two squares.

We will solve this problem of the sums of two squares more generally later, but for now we emphasize that

1. because any equation in the integers can be reduced to an equation mod n,

2. any solution with integers becomes a solution mod n,

3. and mod n there are only a finite number of options to check

it is useful to reduce mod n to show that equations in the integers have no solution. However, not all
problems can be solved this way; certain elliptic curves, for example, have no solutions in the integers but
solutions in Z/nZ for every n.

Theorem 10. A residue class [x] = x mod n is a unit in Z/nZ if and only if (x, n) = 1. In this case,
x mod n is called a reduced residue class mod n.

Proof. Suppose (x, n) = 1. This implies (x, n) = (1) as ideals, so in particular there exist a, b ∈ Z such that

ax+ bn = 1⇒ ax− 1 = −bn⇒ ax ≡ 1 mod n.

Hence in this case [a] and [x] are inverses in Z/nZ. On the other hand, suppose a is an inverse for x mod
n. Then for some b ∈ Z, ax− 1 = bn. Yet then ax− bn = 1, whence 1 ∈ (x, n). Since (1), the smallest ideal
containing 1, is the entire ring, this forces (x, n) = (1). Hence (x, n) = 1.

Corollary 10.1. The ring of integers mod n forms a field if and only if n is prime.

Proof. This is because 1, . . . , n− 1 are all coprime to n if and only if n is prime.

Theorem 11 (Wilson’s Theorem). (n− 1)! ≡ −1 mod n if and only if n is prime.

Proof. If n is not prime, then plainly (n− 1)! ≡ 0 mod n. Therefore assume n is prime. Then by Corollary
10.1, every nonzero residue class has an inverse, so in the factorial (n−1)!, nonzero residue classes will cancel
out with their inverse – unless they are their own inverse. Hence

(n− 1)! ≡
∏

x mod n
x2≡1 mod n

x mod n.

Yet x2 ≡ 1 mod n ⇒ x2 − 1 ≡ 0 mod n ⇒ (x + 1)(x − 1) ≡ 0 mod n, and since n is prime, we must either
have x+ 1 = 0 or x− 1 = 0. This implies that either x = −1 or x = 1, so

(n− 1)! ≡
∏

x mod n
x2≡1 mod n

x ≡ −1 · 1 ≡ −1 mod n.
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2.5 The Infinitude of Primes

Theorem 12 (Euclid). There are infinitely many primes in Z.

Proof. Suppose, to the contrary, that there are finitely many primes p1, . . . , pn in Z. Then consider

k = p1 · · · pn + 1.

By unique factorization, k is divisible by a prime p. But k ≡ 1 mod pi for each i, so k is not divisible by any
of the primes p1, . . . , pn. Hence k is divisible by a prime not among p1, . . . , pn, which is a contradiction.

Proposition 13. There are infinitely many primes of the form 4k + 3 (where k is an integer).

Proof. Suppose that there are finitely many primes p1, . . . , pn of the form 4k + 3. Then consider

j = 4p1 · · · pn − 1.

Now, j is odd, so it is the product of odd primes. Yet j cannot be solely the product of primes of the form
1 mod 4, since then we would have j ≡ 1 mod 4, which is not true (indeed j ≡ 3 mod 4). Furthermore, j is
not divisible by any of the primes p1, . . . , pn, since j ≡ −1 mod pi for each i. Hence we may conclude that j
is divisible by a prime of the form 4k + 3 not among p1, . . . , pn, the desired contradiction.

It turns out the following fact is true, but you cannot prove it with the same method as Prop. 13. Why?

Proposition 14. There are infinitely many primes of the form 4k + 1 (where k is an integer).

3 Arithmetical Functions

The formal definition of an arithmetical function is quite loose:

Definition 28 (Arithmetical Function). An arithmetical function is a function f : Z+ → C.

However, the spirit of arithmetical functions is to investigate number-theoretic properties of the integers.
The goal of the definition is simply to provide an umbrella term for these important functions.

3.1 Multiplicativity and Dirichlet Convolution

Definition 29 (Multiplicative). An arithmetical function f is said to be multiplicative if whenever m and
n are coprime, f(mn) = f(m)f(n). Furthermore, f is said to be totally multiplicative if f(mn) = f(m)f(n)
for all positive integers m and n (not just pairwise coprime positive integers).

Definition 30 (Dirichlet Convolution). Given two arithmetical functions f and g, their Dirichlet convolution
is defined to be the arithmetical function given by

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
.

where the sum is ranging over all the positive integers d dividing n (called the divisors of n).

The reason why Dirichlet convolution is a powerful tool is the following fact:

Theorem 15. If f and g are multiplicative arithmetical functions, then (f ∗ g) is also multiplicative.

Proof. Suppose m and n are coprime, and consider the following:

(f ∗ g)(mn) =
∑
d|mn

f(d)g
(mn
d

)
=
∑
d1|m
d2|n

f(d1d2)g

(
m

d1
· n
d2

)
=
∑
d1|m
d2|n

f(d1)f(d2)g

(
m

d1

)
g

(
n

d2

)
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where, for the second equality, we notice that since m and n are coprime the divisors of mn can be split
up into divisors of m and divisors of n, and for the third equality we are using the fact that f and g are
multiplicative. Now, we will factor the final sum given, to see that

∑
d1|m
d2|n

f(d1)f(d2)g

(
m

d1

)
g

(
n

d2

)
=

∑
d1|m

f(d1)g

(
m

d1

)∑
d2|n

f(d2)g

(
n

d2

) = (f ∗ g)(m) · (f ∗ g)(n),

which is the desired result.

Theorem 16. Dirichlet convolution is associative and commutative; (f∗g)∗h = f∗(g∗h) and (f∗g) = (g∗f).

Proof. Not difficult, simply a matter of tedious computation.

Following is an example application of Dirichlet convolution to proving that a function is multiplicative.

Definition 31 (σ-function). The σ-function σ(n) is defined to be the sum of all of the divisors of n, that is

σ(n) =
∑
d|n

d.

Proposition 17. The σ-function is multiplicative.

Proof. Notice that if id : Z+ → C is the identity function id(n) = n and 1 : Z+ is the trivial function
1(n) = 1, then both id and 1 are totally multiplicative (and hence multiplicative) functions. But also

σ = (id ∗1)

so because the Dirichlet convolution of multiplicative functions is multiplicative, σ is multiplicative.

3.2 The Chinese Remainder Theorem

Definition 32 (Direct Product). Given two rings R and S, the direct product of R and S, denoted R× S,
is the ring on the underlying set R× S = {(r, s) | r ∈ R, s ∈ S} with operations given by

(r, s) + (r′, s′) = (r + r′, s+ s′) (r, s)(r′, s′) = (rr′, ss′).

It is not difficult to generalize this notion to the direct product of n rings.

Theorem 18 (First Isomorphism Theorem). Suppose that φ : R→ S is a ring homomorphism. Then

R/ kerφ ' imφ.

Proof. Suppose that r1 and r2 are elements of R. Then [r1] = [r2] ∈ R/ kerφ if and only if φ(r1) = φ(r2).
To see why, notice that

[r1] = [r2]⇔ r1 − r2 ∈ kerφ⇔ φ(r1 − r2) = 0⇔ φ(r1)− φ(r2) = 0⇔ φ(r1) = φ(r2).

In other words, there exists a well-defined and injective map ι : R/ kerφ → S given by [r] → φ(r). It
is easy to check that this map is a ring homomorphism. Furthermore, the image of ι is clearly imφ, so
ι′ : R/ kerφ→ imφ is well-defined, injective, and surjective, so it is an isomorphism.

Theorem 19 (The Chinese Remainder Theorem). Suppose that n1, . . . , nk are coprime integers. Then,

Z/(n1 · · ·nk)Z ' Z/n1Z× · · · × Z/nkZ

along the isomorphism x mod n1 · · ·nk 7→ (x mod n1, . . . , x mod nk).
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Proof. Consider the map

φ : Z→ Z/n1Z× · · · × Z/nkZ given by x 7→ (x mod n1, . . . , x mod nk).

Since n1, . . . , nk are coprime, x is 0 mod ni for each i if and only if x is 0 mod n1 · · ·nk. Therefore,
kerφ = (n1 · · ·nk). Hence the map

φ : Z/(n1 · · ·nk)Z→ imφ

given by x mod n1 · · ·nk 7→ (x mod n1, . . . , x mod nk) is an isomorphism. Now, also notice that imφ ⊆
Z/n1Z× · · · × Z/nkZ, yet because imφ and Z/(n1 · · ·nk)Z are isomorphic,

| imφ| = |Z/(n1 · · ·nk)Z| = n1 · · ·nk = |Z/n1Z× · · · × Z/nkZ|

and since |Z/n1Z × · · · × Z/nkZ| is finite this implies that imφ = Z/n1Z × · · · × Z/nkZ. Hence φ :
Z/(n1 · · ·nk)Z → Z/n1Z × · · · × Z/nkZ given by x mod n1 · · ·nk 7→ (x mod n1, . . . , x mod nk) is indeed
an isomorphism, as desired.

Corollary 19.1. Suppose that the prime factorization of n is pe11 · · · p
ek
k . Then

Z/nZ ' Z/pe11 Z× · · · × Z/pekk Z.

In fact, a more general results exists, and though we will not prove it here, its statement is worth remembering.

Definition 33 (Coprime Ideals). Two ideals I and J in a ring R are coprime if I + J = R.

Theorem 20 (The Chinese Remainder Theorems for Rings). Suppose that I1, . . . , In are pairwise coprime
ideals. Then I1 ∩ · · · ∩ In = I1 · · · In, and the natural map R → R/I1 × · · · × R/In is surjective with kernel
I1 ∩ · · · ∩ In = I1 · · · In, so

R/(I1 · · · In) ' R/(I1 ∩ · · · ∩ In) ' R/I1 × · · · ×R/In.

3.3 The Euler ϕ-Function

Definition 34 (ϕ-function). The ϕ-function is defined to be the arithmetical function

φ(n) = |Z/nZ|×,

which by Theorem 10 is also equal to the number of elements of {1, . . . , n− 1} coprime to n.

Proposition 21. If p is prime, ϕ(p) = p− 1.

Proof. Follows immediately from Corollary 10.1.

Proposition 22. If p is prime and k ≥ 1, then ϕ(pk) = pk − pk−1 = pk
(

1− 1
p

)
.

Proof. Notice that the elements of {1, . . . , pk} which are not coprime to pk are the multiples of p; that is,
{p, 2p, . . . , pk−1p}. There are pk−1 such elements, leaving pk−pk−1 elements of {1, . . . , pk} coprime to p.

Proposition 23. ϕ is multiplicative.

Proof. Suppose m and n are coprime. Then

ϕ(mn) = |(Z/mnZ)×| = |(Z/mZ× Z/nZ)×|

where the second equality is the Chinese Remainder Theorem (Theorem 19). Yet notice that an element
(r, s) ∈ R× S is a unit if and only if r is a unit of R and s is a unit of S. Hence,

ϕ(mn) = |(Z/mZ× Z/nZ)×| = |(Z/mZ)× × (Z/nZ)×| = ϕ(m)ϕ(n).
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Corollary 23.1. Suppose the prime factorization of n is pe11 · · · p
ek
k . Then

ϕ(n) = n

(
1− 1

p1

)
· · ·
(

1− 1

pk

)
.

Proof. This follows immediately from Propositions 22 and 23.

Theorem 24.
∑
d|n ϕ(d) = n.

Proof. Notice that
∑
d|n ϕ(d) is equal to the Dirichlet convolution ϕ ∗ 1, where 1 : n → 1 is the trivial

arithmetical function. Since ϕ and 1 are both multiplicative, by Theorem 15
∑
d|n ϕ(d) is multiplicative.

Hence it suffices to show that ∑
d|pk

ϕ(d) = pk

for every prime power pk (since then by multiplicativity the result will follow). Yet this is simple:∑
d|pk

ϕ(d) = ϕ(1) + ϕ(p) + ϕ(p2) + · · ·+ ϕ(pk) = 1 + (p− 1) + (p2 − p) + · · ·+ (pk − pk−1) = pk

with the final equality following by telescoping.

Theorem 25 (Euler’s Theorem). For any a and n with (n, a) = 1,

aϕ(n) ≡ 1 mod n.

Proof. This is a consequence of Lagrange’s Theorem (group theory) and the fact that (Z/nZ)× is a group
of order ϕ(n).

Corollary 25.1 (Fermat’s Little Theorem). For any prime p and a not divisible by p,

ap−1 ≡ 1 mod p.

Theorem 26. φ(n) is even for all n > 2.

Proof. Suppose that k is coprime to n. Then n− k is coprime to n. Furthermore, if n > 2, then k 6= n− k
for all k coprime to n, since if k = n − k, then k = n

2 is not coprime to n. This implies that numbers
{1, . . . , n− 1} coprime to n come in pairs {k, n− k} for all n > 2, whence φ(n) is even in this case.

3.4 Möbius Inversion and Other Multiplicative Functions

Definition 35. For any positive integer n, the Möbius function is defined as follows:

µ(n) =

{
0 p2 | n for some prime p,

(−1)r n = p1 · · · pr for distinct primes p1, . . . , pr.

Since 1 is the empty product, µ(1) = (−1)0 = 1. Clearly, the Möbius function is multiplicative.

Theorem 27 (Möbius Inversion Formula). Suppose that f, g satisfy g(n) =
∑
d|n f(d). Then,

f(n) =
∑
d|n

µ(d)g
(n
d

)
.

Succintly, if g = f ∗ 1 (where 1 is the constant function n 7→ 1), then f = µ ∗ g.
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Proof. Let ε be the arithmetical function defined by ε(1) = 1 and ε(n) = 0 for all n > 1. I claim that µ∗1 = ε.
To see why, first notice that clearly (µ ∗ 1)(1) = ε(1) = 1. Then, for any n > 1, write n = pe11 · · · p

ek
k . Yet

notice that µ(d) (for d | n) is only nonzero if d is the product of distinct primes among p1, . . . , pk. Hence

∑
d|n

µ(d) =
∑

S⊆{1,...,k}

µ

(∏
s∈S

ps

)
=

∑
S⊆{1,...,k}

(−1)|S| =

k∑
i=0

(
k

i

)
(−1)i = (1− 1)k = 0

where the third equality is grouping together terms corresponding to subsets of the same size and the fourth
equality is simply the Binomial Theorem. Hence (µ∗1)(n) = ε(n) for any n > 1, so in general µ∗1 = ε. Now,
notice that (f ∗ ε) = (ε ∗ f) = f . Hence, by the associativity and commutativity of Dirichlet convolution
(Theorem 16), we have that µ ∗ g = g ∗ µ = (f ∗ 1) ∗ µ = f ∗ (1 ∗ µ) = f ∗ (µ ∗ 1) = f ∗ ε = f .

Definition 36. If f and g are arithmetical functions satisfying g = f ∗1 and f = µ∗g, then f and g are said
to be Möbius transforms of one another. In particular, f is multiplicative if and only if g is multiplicative
(by the fact that the Dirichlet convolution of multiplicative functions is multiplicative, Theorem 15).

For example, the Euler ϕ-function and the identity map n 7→ n are Möbius transforms of one another. If we
demonstrated this fact without relying on the multiplicativity of ϕ, it would provide an alternate proof of
the fact that varφ is multiplicative.

4 Polynomials on Z/nZ
4.1 The Ring of Polynomials

Definition 37 (Ring of Polynomials). Suppose that R is a ring. Then R[X] is the ring of all polynomials
of X with coefficients in R, with addition and multiplication defined as one would expect.

Definition 38 (Degree). Let f ∈ R[X] be a nonzero polynomial. Then f can be uniquely expressed as
anx

n + an−1x
n + · · ·+ a1x+ a0 for nonzero an ∈ R. We define n to be the degree of f , denoted deg(f).

Theorem 28 (Division Algorithm on Polynomials). Suppose that R is a ring. Then, for any polynomials
f, g ∈ R[X] such that the leading coefficient of g is a unit of R, there exist unique polynomials q, r ∈ R[X]
with deg r < deg g and f = qg + r.

Proof. This follows from polynomial long division, which works in any ring R as long as the leading coefficient
of g ∈ R[X] is a unit of R.

Lemma 29. If F is a field, then F [X] is a Euclidean domain.

Proof. By Theorem 28, N(f) = deg(f) is a Euclidean norm on F [X].

Lemma 30 (Correspondence Between Roots and Factors). Suppose R is an integral domain and f is a
polynomial in R[X]. Then f has a root at a (i.e. f(a) = 0) if and only if (X − a) is a factor of f .

Proof. Suppose that (X − a) is a factor of f . Then, by definition there is a polynomial g such that f =
g(X − a). But then f(a) = g(a)(a − a) = 0, as desired. On the other hand, suppose that f(a) = 0. Then,
by the division algorithm, there exists q, r ∈ R[X] such that f = q(X − a) + r for some constant polynomial
r. But then f(a) = q(a− a) + r = r, so r = 0. Hence f = q(X − a), so (X − a) is a factor of f .

Definition 39 (Multiplicity of a Root). Suppose that R is an integral domain and f is a polynomial in
R[X]. Further suppose that a is a root of f . Then the multiplicity of a is the largest integer k such that
(X − a)k divides f . We call a a multiple root of f if k ≥ 2.

Definition 40 (Algebraic Derivative). Let f = anX
n+an−1X

n−1 + · · ·+a1X+a0 ∈ R[X] be a polynomial.
Then the (algebraic) derivative of f(X), denoted f ′, is defined to be

annX
n−1 + an−1(n− 1)Xn−1 + · · ·+ a22X + a1 ∈ R[X].
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Notice that this derivative does a priori have anything to do with the ordinary derivative; this definition is
made without any reference to the derivative of a real function. However, we will soon see that some key
properties are shared, which is why this definition is still useful.

Lemma 31 (Properties of the Algebraic Derivative). Let R be an integral domain. Take f and g polynomials
in R[X] and r, s ∈ R arbitrarily. Then,

1. (rf + sg)′ = rf ′ + sg′ (the algebraic derivative is linear).

2. (fg)′ = fg′ + f ′g (the product rule for algebraic derivatives).

3. Suppose that f(a) = 0. Then a is a multiple root of f if and only if f ′(a) = 0.

Proof. Parts (1) and (2) amount to mechanical symbol manipulation, so we leave their proofs as an exercise
to the reader. As for part (3), suppose that a is a multiple root of f . Then f = (X−a)2g for some polynomial
g ∈ R[X]. But then by part (2), f ′ = (X − a)2g′ + 2(X − a)g, so indeed f ′(a) = 0. On the other hand,
suppose that a is not a multiple root of f . Then f = (X − a)g for some polynomial g ∈ R[X] with g(a) 6= 0.
But then f ′ = g + (X − a)g′, so f ′(a) = g(a) + (a− a)g′(a) = g(a) 6= 0, as desired.

Theorem 32 (Taylor Series using the Algebraic Derivative). Just as Taylor series can be defined for real
functions using the ordinary derivative can be applied to real polynomials, we may define the Taylor series
of a polynomial f(X) ∈ R[X] around r ∈ R as follows:

f(X) =

N∑
n=0

f (n)(r)(X − r)n

n!

where N = deg(f) and f (n)(r) is the nth derivative of f evaluated at r.

Proof. Since the derivative is linear by Lemma 31, it suffices to prove the result for a monomial. That is,
without loss of generality we may assume f(X) = XN . Next,

XN = ((X − r) + r)N =

N∑
n=0

(
N

n

)
rN−n(X − r)n

Yet
(
N
n

)
rN−n = N(N−1)···(N−n+1)rN−n

n! = f(n)(r)
n! , so we have XN =

∑N
n=0

f(n)(r)(X−r)n
n! , as desired.

4.2 Hensel’s Lemma

Hensel’s Lemma is a powerful and surprising result about roots of polynomials modulo prime powers:

Lemma 33 (Hensel’s Lemma). Let f ∈ Z[X]. Also let m ≤ k be positive integers, and suppose r ∈ Z is
such that

f(r) ≡ 0 mod pk and f ′(r) 6≡ 0 mod p

then there exists an integer s (unique mod pk+m) such that f(s) ≡ 0 mod pk+m and r ≡ s mod pk.

Furthermore, suppose a is the multiplicative inverse of f ′(r) mod pm (which exists because (a, p) = 1 implies
(a, pm) = 1). Then s = r − f(r)a.

Proof. Let s be an integer with r ≡ s mod pk. Then s− r = tpk for some integer t. Now, by Theorem 32,

f(s) =

N∑
n=0

f (n)(r)(tpk)n

n!
= f(r) + tpkf ′(r) +

N∑
n=2

f (n)(r)

n!
tnpkn

Now, f(r) ≡ 0 mod pk implies f(r) = zpk for some integer z. Also define g(t) =
∑N
n=2

f(n)(r)
n! tn−2pk(n−2), so

f(s) = zpk + tpkf ′(r) + p2kt2g(t) = pk(z + tf ′(r)) + p2kt2g(t).
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Now, since m ≤ k, f(s) ≡ 0 mod pk+m if and only if pk(z + tf ′(r)) ≡ 0 mod pk+m, which happens if and
only if z+ tf ′(r) ≡ 0 mod pm. Now, let a be the multiplicative inverse of f ′(r) mod pm, which exists because
f ′(r) 6≡ 0 mod p implies that f ′(r) is coprime to pm. Then we have f(s) ≡ 0 mod pk+m if and only if
t ≡ −za mod pm. Hence a unique solution for t mod pm exists, giving us a unique solution s mod pk+m.

Corollary 33.1. Let f ∈ Z[X]. Let k be a positive integer. Suppose r ∈ Z satisfies f(r) ≡ 0 mod p and
f ′(r) 6≡ 0 mod p. Then there exists an integer s such that f(s) ≡ 0 mod pk.

4.3 The Structure of (Z/nZ)×

Recall from the Chinese Remainder Theorem (Theorem 19) and the reasoning of Proposition 23 that if
pe11 · · · p

ek
k is the prime factorization of n, then we can decompose the unit group of Z/nZ as so:

(Z/nZ)× ' (Z/pe11 Z)× × · · · × (Z/pekk )×

Therefore, to understand the structure of (Z/nZ)×, it suffices to characterize the unit group of (Z/pkZ)×

for any prime power pk. This is the focus of this section.

Definition 41 (Primitive Root). A primitive root mod n is a reduced residue class x mod n such that every
reduced residue class mod n is a power of x mod n. In other words, x mod n is a generator for the unit
group (Z/nZ)× – it has order ϕ(n). Plainly, such a generator exists if and only if the unit group is cyclic.

Proposition 34. If there exists a primitive root mod n, there exist ϕ(ϕ(n)) primitive roots mod n.

Proof. This follows from the group-theoretic fact that there exist ϕ(k) generators of the cyclic group Ck.

Theorem 35. If p is a prime, the unit group U = (Z/pZ)× is cyclic.

Proof. Since (Z/pZ)× has order p − 1, each element x ∈ (Z/pZ)× has order dividing p − 1. Let d be the
number of x ∈ (Z/pZ)× with order d, so that necessarily

∑
d|(p−1) ψ(d) = p− 1.

Now, suppose that ψ(d) 6= 0. Then there exists a ∈ (Z/pZ)× with order d. Then 1, a, . . . , ad−1 are all
distinct elements, and all of them satisfy the polynomial relation Xd − 1 ≡ 0 mod p. Yet it is well-known
that in an integral domain, the number of roots of a polynomial cannot exceed its degree (since each root
corresponds to a linear factor of the polynomial). Since Z/pZ is a field, this implies that Xd − 1 ≡ 0 mod p
has at most d roots; yet 1, a, . . . , ad−1 are d such roots.

Since any element of order d satisfies Xd − 1 ≡ 0 mod p, and the only roots of this polynomial are
1, a, . . . , ad−1, all the elements of order d are contained in 1, a, . . . , ad−1. Furthermore, it is not difficult
to see that ak has order d iff (k, d) = 1, whence ψ(d) = ϕ(d) if ψ(d) 6= 0. Yet recall Theorem 24, which
implies that

∑
d|(p−1) ϕ(d) = p− 1. Hence ψ(d) must equal ϕ(d) everywhere, since if ψ(d) = 0 for any d,∑

d|(p−1)

ψ(d) <
∑

d|(p−1)

ϕ(d) = p− 1

yet we know that the former is equal to the latter. Hence there exist ϕ(p− 1) > 0 elements of order p− 1,
which implies that (Z/pZ)× is cyclic, as desired.

Theorem 36. If p is an odd prime, the unit group U = (Z/pkZ)× is cyclic.

Proof. We prove the following result: let g be a primitive root mod p, where p is an odd prime. Then for
any fixed j, there exists an x such that g′ = g + px is a primitive root mod pj . The proof is as follows.

Define g′ = g + px. Now, gp−1 = 1 + py for some integer y, so by the binomial theorem,

g′p−1 = 1 + pz, where z ≡ y + (p− 1)gp−2x mod p.
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Notice that because (p− 1) and gp−2 are relatively prime with p, we may choose x such that (z, p) = 1. But
then g′ = g + px is a primitive root mod pj . To see this, suppose g′ has order d mod pj , so d′ | φ(pj) =
pj−1(p− 1). Since g′ is a primitive root mod p, (p− 1) | d. Thus:

d = pk(p− 1) where k < j (1)

Since p is odd, we may use the binomial theorem to show that

g′d = (g + px)(p−1)pk = (1 + pz)p
k

= 1 + pk+1z′ (2)

for some (z′, p) = 1. Since g′d ≡ 1 mod pj , we know that j = k + 1, so d = φ(pj), as desired.

Theorem 37. The unit group U = (Z/2kZ)× is cyclic if k = 1 or 2 and isomorphic to the group C2×C2k−2

otherwise (that is, if k ≥ 3).

Proof. 1 is a primitive root mod 2, and 3 is a primitive root mod 4.

Now, for the second part, we will begin with the following two lemmas:

Lemma 38. For any positive integer k ≥ 2, 5 mod 2k has multiplicative order 2k−2.

Proof. To start, we show that for any k, 52k

= 1 + m2k+2 for some odd m. To prove this, we will use
induction. For the base case, notice that for k = 0, 520

= 5 = 1 + 1(22+0), as desired. Now assume the result

holds for k; that is, 52k

= 1 +m2k+2 for some odd m. Then,

52k+1

=
(

52k
)2

= (1 +m2k+2)2 = 1 +m2k+3 +m222k+4 = 1 + (m+m22k+1)2k+3

and indeed m+m22k+1 is odd because clearly m22k+1 is even.

Yet this implies that the order of 5 mod 2k is 2k−2 for k ≥ 2. To see why, note that 52k−2

= 1 +m2k implies

52k−2 ≡ 1 mod 2k. On the other hand, as above, 52k−3 ≡ 1 +m2k−1 ≡ 1 + 2k−1 6≡ 1 mod 2k. Thus, since the
order of 5 divides 2k−2 but doesn’t divide 2k−3, we have that the order of 5 is 2k−2, as desired.

Lemma 39. There does not exist any n ∈ Z for which 5n ≡ −1 mod 2k for any k ≥ 2.

Proof. Since 5 has order 2k−2, if any such n exists, we can find one in the set {1, . . . , 2k−2}. Thus, suppose
that n ∈ {1, . . . , 2k−2} is such that 5n ≡ −1. Then 52n ≡ 1, which implies that 2k−2 divides 2k. Since n lies
in the set {1, . . . , 2k−2}, we must either have n = 2k−2 or n = 2k−3. Yet, in either case, 5n 6≡ −1:

52k−2

≡ 1 mod 2k and 52k−3

≡ 1 + 2k−1 mod 2k

This is a contradiction, so no such k exists.

Corollary 39.1. If k ≥ 2, 5m 6≡ −5n mod 2k for any integers m or n.

Proof. Suppose that 5m ≡ −5n mod 2k for some positive integers m or n. Then 5m−n ≡ −1 mod 2k, a
contradiction with the above result.

Corollary 39.2. If k ≥ 2, every reduced residue class mod 2k can be expressed as ±5n for a unique n ∈
{1, . . . , 2k−2}.

Proof. There are φ(2k) = 2k−1 reduced residue classes mod 2k. At the same time, the elements of the form
{5n | n ∈ {1, . . . , 2k−2}} and the elements of the form {−5n | n ∈ {1, . . . , 2k−2}} are each sets of 2k−2

distinct reduced residue classes mod 2k, and they are distinct from each other by the above corollary.
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The unique expression of each reduced residue class in the form ±5n with n ∈ {1, . . . , 2k−2} gives an
isomorphism φ : (Z/2kZ)× → C2 × C2k−2 . To see why, let −1 generate C2 and c generate C2k−2 . Then,

φ(x) =

{
(1, cn) x ≡ 5n mod 2k

(−1, cn) x ≡ −5n mod 2k.

is not only a homomorphism, but is a bijection (and hence an isomorphism) by uniqueness.

Theorem 40. There exists a primitive root mod n if and only if n is 2, 4, pk, 2pk for an odd prime p.

Proof. This proof is split into two parts:

Sufficiency: Theorem 35 and 37 prove that there exists a primitive root mod 2, 4, and pk, so it suffices
to find a primitive root mod 2pk. Yet notice that if p is an odd prime, ϕ(2pk) = ϕ(2)ϕ(pk) = ϕ(pk), any
primitive root mod pk, so it suffices to find a primitive root g of pk which is coprime to 2pk. Indeed, it
suffices for g to be odd, since it is already coprime to pk. Yet for any such primitive root g, either g or g+pk

is odd, so in either case we are done.

Necessity: Suppose n is a composite number which is not a power of a prime or twice the power of a prime.
Then write n = n1n2 where n1, n2 are both greater than 2 and coprime. Notice that ϕ(n1) and ϕ(n2) are
both even, by Theorem 26. Now, for any natural number a,

a
1
2ϕ(n) ≡

(
aϕ(n1)

) 1
2ϕ(n2)

≡ 1 mod n1 a
1
2ϕ(n) ≡

(
aϕ(n2)

) 1
2ϕ(n1)

≡ 1 mod n2

whence the Chinese Remainder Theorem a
1
2ϕ(n) ≡ 1 mod n. Hence a is not a primitive root. The case of

powers of two greater than 4 is handled by applying Theorem 37 and noticing that C2×C2k−2 6' C2k−1 .

5 Quadratic Residues

Definition 42 (Quadratic Residue). Suppose x is an integer which is nonzero mod n. Then we say x is a
quadratic residue mod n if there exists an integer y with x ≡ y2 mod n, and a quadratic nonresidue otherwise.

Proposition 41. For any odd prime p, there are exactly p−1
2 quadratic residues mod p. That is, half of all

the nonzero residue classes mod p are quadratic residues.

Proof. Suppose p is an odd prime. Then the map φ : (Z/pZ)× → (Z/pZ)× given by x 7→ x2 is a homomor-
phism whose image is precisely the set of quadratic residues mod p. Now suppose x ∈ kerφ. Then

x2 ≡ 1 mod p⇔ x2 − 1 ≡ 0 mod p⇔ (x+ 1)(x− 1) ≡ 0 mod p⇔ x = ±1.

Hence kerφ = {−1, 1} has cardinality 2. But the number of quadratic residues is equal to the size of imφ,
which by the first isomorphism theorem is equal to |(Z/pZ)×/ kerφ| = p−1

2 , as desired.

5.1 The Legendre Symbol and Euler’s Criterion

Definition 43 (Legendre Symbol). Suppose a ∈ Z and p is prime. Then the Legendre symbol of a mod p is

(
a

p

)
=


0 a ≡ 0 mod p

1 a is a quadratic residue mod p

−1 a is a quadratic nonresidue mod p.

Proposition 42 (Euler’s Criterion). If p is an odd prime and a is an integer, then(
a

p

)
≡ a

p−1
2 mod p
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Proof. If a is 0 mod p, the result follows trivially. Otherwise, notice that by Fermat’s Little Theorem

(Theorem 25.1), a
p−1
2 has square 1 mod p, so it is either equal to 1 or −1. Hence it suffices to show that

a
p−1
2 ≡ 1 mod p iff a is a quadratic residue mod p.

For this, let g be a generator of (Z/pZ)× and write a ≡ gk mod p for some minimal positive integer k. Notice

that a is a quadratic residue mod p if and only if k is even. But k if even if and only if a
p−1
2 ≡ gk

p−1
2 is equal

to 1 mod p, so the desired result follows.

Corollary 42.1. The Legendre symbol is multiplicative; that is,
(
a
p

)(
b
p

)
=
(
ab
p

)
Corollary 42.2. −1 is a quadratic residue mod p if and only if p 6≡ 3 mod 4.

5.2 Gauss’ Lemma and Zolotarev’s Lemma

Definition 44 (Numerically Least Residue). For any integer a and any natural number n we define the
numerically least residue of a mod n as that integer a′ such that a ≡ a′ mod n and −n2 < a′ ≤ n

2 .

Lemma 43 (Gauss’ Lemma). Let p be an odd prime and suppose that a is nonzero mod p. Furthermore, let
n be the number of j ∈ {1, . . . , p−1

2 } such that the numerically least residue of aj mod p is negative. Then(
a

p

)
= (−1)n.

Proof. Let Z ≡ a·2a · · · p−1
2 a mod p. On one hand, Z ≡ a

p−1
2

(
1 · 2 · · · p−1

2

)
. On the other hand, by replacing

aj with its numerically least residue and factoring out the negative sign if necessary, we find that

Z ≡ (−1)n
(

1 · 2 · · · p− 1

2

)
.

Hence a
p−1
2 ≡ (−1)n, and the result follows by Euler’s criterion.

Corollary 43.1.
(

2
p

)
= (−1)

1
8 (p2−1). In other words, 2 is a quadratic residue of all primes p ≡ ±1 mod 8

and a quadratic nonresidue of all primes p± 3 mod 8.

Proof. If a = 2, the numerically least residue of aj is positive and equal to 2j for 1 ≤ j ≤
⌊
p
4

⌋
and equal to

2j − p otherwise. Hence n = 1
2 (p− 1)−

⌊
p
4

⌋
, which one can calculate is equivalent to p2−1

8 mod 2.

Lemma 44 (Zolotarev’s Lemma). Suppose that p is an odd prime and (a, p) = 1. Then(
a

p

)
= sgn(πa)

where πa : x 7→ ax is a permutation on (Z/pZ)×, so sgn(πa) is the sign (or parity) of πa.

Proof. Consider the following table of all the numerically least residues coprime to p:

1 2 · · · p−1
2

−1 −2 · · · p+1
2

Then, apply the permutation πa : x 7→ ax to get a rearranged table. Again, we will stick with the numerically
least residues, so whenever ax is not a numerically least residue, replace it with its numerically least residue.

a 2a · · ·
(
p−1

2

)
a

−a −2a · · ·
(
p+1

2

)
a
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Now, apply another permutation φ to this table which swaps the two cells in a column if the top one is
negative. Notice that the number of transpositions required for φ is precisely n (as it was defined in the

statement of Gauss’ Lemma, Lemma 43). Hence sgn(φ) = (−1)n, which by Gauss’ Lemma is equal to
(
a
p

)
.

I claim that φ and πa have the same sign; this would suffice to prove the desired result. To prove this,
notice that two permutations σ and τ on the same set have the same sign iff στ (or τσ) is even. Now, φπa
does the exact same thing to the top row as it does to the bottom row; that is, φπa can be expressed as
a permutation of only top row combined with the exact same permutation of the bottom row. Hence φπa
must be the product of an even number of transpositions, so it is even, as desired.

Following is another, more group-theoretic proof:

Proof. Consider the group homomorphism f : (Z/pZ)× → {−1, 1} given by f(a) = sgn(πa). Now, f is also
surjective. To see why, first notice that f(1) = 1. Then let g be a generator of (Z/pZ)×. Then sgn(πg)
is a (p − 1)-cycle, which is composed of p − 2 transpositions. This is an odd number of transpositions, so
f(g) = sgn(πg) = −1, as desired.

Now, since f is surjective, by the First Isomorphism Theorem and counting, ker f must have index 2 in
(Z/pZ)×. But (Z/pZ)× is cyclic, so it has a unique subgroup of any index, and the set of quadratic residues
has index 2 by Proposition 41. Hence we are done.

5.3 The Law of Quadratic Reciprocity

Next, we’ll use Zolotarev’s Lemma for an elegant proof of The Law of Quadratic Reciprocity, which is

Theorem 45 (The Law of Quadratic Reciprocity). If p and q are distinct odd primes, then

(
p

q

)
=

(
q

p

) (p−1)(q−1)
4

.

In particular
(
p
q

)
=
(
q
p

)
unless p ≡ q ≡ 3 mod 4, in which case

(
p
q

)
= −

(
q
p

)
.

To prove this result, we’ll use the following lemma, derived from Zolotarev’s Lemma:

Lemma 46. Suppose p and q are odd primes, a ∈ (Z/qZ)× and b ∈ (Z/pZ)×. Then define φ : x 7→ b + qx

and ψ : x 7→ a+ px. Then it follows that
(
p
q

)
= sgn(φ) and

(
q
p

)
= sgn(ψ).

Proof. Define σ : Z/qZ→ Z/qZ by σ(x) = a+x. This permutation consists of a single q-cycle (x, a+x, 2a+
x, . . . , (q − 1)a + x). Therefore, σ is the product of q − 1 transpositions, so sgn(σ) = 1. Yet notice that

φ = σπp, so sgn(φ) = sgn(σ) sgn(πp) = sgn(πp) =
(
p
q

)
. The case sgn(ψ) follows identically.

Now we can prove the Law of Quadratic Reciprocity.

Proof. Let p and q be distinct odd primes. Then, define ι : Z/pqZ→ (Z/pZ)×(Z/qZ) to be the isomorphism
given by the Chinese Remainder Theorem. Also define φ′, ψ′ : (Z/pZ)× (Z/qZ)× (Z/pZ)× (Z/qZ) by

φ′(a, b) = (a, a+ pb) ψ′(a, b) = (b+ qa, b).

Define the permutation ϕ : Z/pqZ → Z/pqZ by ϕ(a + pb) = qa + b. Though it may not be obvious, by the
Chinese Remainder Theorem this is well-defined.

Now, ϕ = ι−1 ◦ ψ′ ◦ φ′−1 ◦ ι and hence sgn(ϕ) = sgn(ψ′) sgn(φ′−1) = sgn(ψ′) sgn(φ′).
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Now consider φ′. If we restrict this to {a} × (Z/qZ) for any a ∈ Z/pZ, then φ′ is simply the permutation φ

defined in Lemma 46, which has sign
(
p
q

)
. But then φ′ is the composition of p permutations with sign

(
p
q

)
,

so φ′ has sign
(
p
q

)p
=
(
p
q

)
. Similar logic shows that sgn(ψ′) =

(
q
p

)
. Hence

sgn(ϕ) = sgn(φ′) sgn(ψ′) =

(
p

q

)(
q

p

)
.

On the other hand, we can compute the sign of ϕ directly. For this, recall that the sign of a permutation σ
on a totally ordered set is equal to (and sometimes defined as) (−1)N , where N is the number of inversions
of σ (pairs (i, j) with i < j and σ(i) > σ(j)). Counting these inversions is not difficult: it turns out that
the requisite pairs are precisely those (a1 + pb1, a2 + pb2) such that a1 > a2 and b2 > b1. Hence the pairs of
distinct doubles {a1 mod p, a2 mod p} and {b1 mod q, b2 mod q} are in correspondence with the inversions.

Hence there are p(p−1)
2 · q(q−1)

2 ≡ (p−1)(q−1)
4 mod 2 inversions of ϕ, so

(−1)
(p−1)(q−1)

4 = sgn(ϕ) =

(
p

q

)(
q

p

)
as desired.

6 Quadratic Forms

Definition 45 (Binary Quadratic Form). A binary quadratic form is a polynomial of the form f(x, y) =
ax2 + bxy + cy2 for integers a, b, c. The form is called primitive if (a, b, c) = 1.

Definition 46 (Discriminant). The discriminant of a binary quadratic form f(x, y) = ax2 + bxy + cy2 is
d = b2 − 4ac. Notice that d ≡ 0 mod 4 if b is even and d ≡ 1 mod 4; this will be be relevant later.

Definition 47 (Representation). An integer n is said to be represented by f(x, y) if there exist a and b with
f(a, b) = n, and n is primitively represented if furthermore (a, b) = 1.

6.1 Equivalent Quadratic Forms

Definition 48 (Equivalent Binary Quadratic Forms). Two binary quadratic forms f(x, y) and g(x, y) are
called equivalent if there exists an integer matrix

M =

[
p q
r s

]
with determinant 1 and associated transformation M : Z2 → Z2 such that f ◦ M = g. Since M has
determinant 1, M−1 is also an integer matrix with determinant 1 satisfying f = g ◦M−1. Hence our notion
of equivalence of binary quadratic forms is an equivalence relation.

Proposition 47. Equivalent binary quadratic forms (primitively) represent the same integers and have the
same discriminant.

Proof. Suppose f and g are equivalent binary quadratic forms. Then f ◦M = g for some 2×2 integer matrix
with determinant 1. But then M−1 is also an integer matrix, and f = g ◦M−1. Hence any (primitive)
solution (a, b) to f(x, y) = n can be made into a (primitive) solution M−1(a, b) for g(x, y) = n, and vice
versa. Mechanical computation (substituting x = px′ + qy′ and y = qx′ + sy′ and simplifying) suffices to
prove that binary quadratic forms have the same discriminant.

Definition 49 (Principal Forms). A binary quadratic form f(x, y) is called a principal form if

1. f(x, y) = x2 − d
4y

2 and d ≡ 0 mod 4.

2. f(x, y) = x2 + xy + 1−d
4 y2 and d ≡ 1 mod 4.
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In either case, the principal form has discriminant d.

Proposition 48 (Output of Binary Quadratic Forms). Let f(x, y) = ax2 + bxy + cy2 be a binary quadratic
form with discriminant d. If d is negative, then f(x, y) is either always nonnegative (if a is positive) and we
call it positive definite or always nonpositive (if a is negative) and we call it negative definite. Otherwise,
we call f(x, y) indefinite, as it can be positive, negative, or zero.

Proof. One can verify that 4af(x, y) = (2ax + by)2 − dy2. From this alone the result follows; if d ≤ 0 then
(2ax+ by)2 − dy2 is the sum of two squares and therefore only nonnegative.

6.2 Reduced Quadratic Forms and Class Numbers

Assume, for this section, that f is a positive definite binary quadratic form. That is, f(x, y) = ax2+bxy+cy2

satisfies d = b2 − 4ac < 0 and a > 0; accordingly, we must have c > 0.

Definition 50 (Reduced Binary Quadratic Forms). Let f(x, y) = ax2 + bxy + cy2 be a positive definite
binary quadratic form. Then f is called reduced if either of the following equalities hold

−a < b ≤ a < c or 0 ≤ b ≤ a = c.

Proposition 49. Assume f is positive definite. Then f is equivalent to a reduced binary form.

Proof. If f(x, y) = ax2 + bxy + cy2 is positive definite, i.e., d < 0 and a > 0. Notice that this implies that
c > 0. Then I claim that a finite product of substitution matrices of the form[

0 1
−1 0

] [
1 1
0 1

] [
1 −1
0 1

]
suffices to transform f into a positive definite form. To see why, notice that the first transformation swaps a
and c, while leaving the absolute value of b unchanged. The second transformation has the effect of leaving
a unchanged, changing b to b+ 2a, and increasing c. Similarly, the third transformation leaves a unchanged,
changes b to b− 2a, and increases c. It is clear from this description that the result follows.

Lemma 50. For any integer d, there are only finitely many reduced forms with discriminant d.

Proof. By the inequalities defining reduced forms (and the fact that a and c are positive), we have ac ≥ b2.
Hence −d = 4ac− b2 ≥ 3ac, implying that |d3 | ≥ a, c. Hence there are only finitely many options for a and
c, and since |b| is bounded by a, we also have only finitely many options for b.

Definition 51 (Class Number). The class number h(d) is the number of reduced binary quadratic forms
with discriminant d.

Theorem 51. h(−4) = 1; that is, the only reduced binary quadratic form with discriminant −4 is x2 + y2.

Proof. Suppose that f(x, y) = ax2 + bxy + cy2 is reduced. Then b2 ≤ ac, so

b2 − 4ac = −4⇒ 4 = 4ac− b2 ⇒ 4 ≥ 3ac⇒ a = 1, c = 1

where the final equality follows because, as discussed earlier, a > 0 and c > 0.

Lemma 52. Any two distinct reduced quadratic forms are not equivalent.

Proof. Suppose that f(x, y) = ax2 + bxy + cy2 is reduced. Now, if x, y ∈ Z are nonzero with |x| ≥ |y|, then

f(x, y) = ax2 + bxy + cy2 ≥ a|x|2 − |bxy|+ c|y|2 ≥ a|x|2 − |bx2|+ c|y|2

= a|x|2 − |b||x|2 + c|y|2 = |x|2(a− |b|) + c|y|2 ≥ a− |b|+ c

Similar logic shows that this bound also holds under the assumption |y| ≥ |x|. Notice that this bound is
tight, as one of (x, y) = (1, 1) or (x, y) = (1,−1) achieves this bound. On the other hand, suppose we allow
exactly one of x or y to be nonzero. Then the smallest values we can assume are at (1, 0) and (0, 1), which
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result in a and c respectively. Therefore, the smallest values that f(x, y) will take with x and y coprime are
a, c, and a− |b|+ c in that order (order follows by the inequalities defining reduced forms).

Now let g(x, y) = a′x2 + b′xy + c′y2 be reduced and equivalent to f(x, y). Our goal is to show that
f(x, y) = g(x, y). Yet we know the minimal values that g(x, y) will take with x and y coprime are a′, c′, and
a′ − |b′| + c′ in that order. Since equivalent forms primitively represent the same integers (Prop. 47), this
implies that a = a′ and c = c′. But then that implies that |b| = |b′|, so either b = b′ or b = −b′.

In the former case, we are immediately done. Therefore, assume b = −b′. Now, if a = c, then by the
inequalities defining reduced forms, 0 ≤ b ≤ a = c and 0 ≤ b′ ≤ a = c, whence b = b′ = 0 (by the relation
b = −b′) and we’re done. Therefore, we must have a < c, and in fact

−a < b ≤ a < c − a < b′ ≤ a < c.

In fact, since b = −b′, we can refine the inequalities to −a < b < a < c and −a < b′ < a < c. This implies
that a− |b|+ c > c > a for all nonzero integers x and y.

Since f and g are equivalent, there exists a unimodular matrix

M =

[
p q
r s

]
.

such that its associated map under the standard basis, M : Z2 → Z2, satisfies f ◦M = g. Now, in general,
we have f(p, r) = a′ and f(q, s) = c′, but since a = a′ and c = c′, we have

a = ap2 + bpr + cr2 ⇒ p = ±1, r = 0 c = aq2 + bqs+ cs2 ⇒ s = ±1, q = 0.

Notice we use that c is strictly greater than a for this result, which implies the only possible matrices are[
1 0
0 1

] [
1 0
0 −1

] [
−1 0
0 1

] [
−1 0
0 −1

]
.

Yet all of these substitutions leave the b-coefficient unchanged, proving that b = b′ = 0 in this case also.

Corollary 52.1. The class number h(d) equals the number of nonequivalent positive definite binary quadratic
forms with discriminant d.

6.3 Representing Numbers with Quadratic Forms

Theorem 53. n is primitively represented by some binary form with discriminant d if and only if there
exists m ∈ Z such that m2 ≡ d mod 4n.

Proof. Suppose that f(x, y) = ax2 + bxy + cy2 primitively represents n; that is, p and r are coprime and
satisfy f(p, r) = n. Since p and r are coprime, there exist q and s satisfying ps− qr = 1, so

M =

[
p q
r s

]
is a unimodular matrix taking f(x, y) to an equivalent form g(x, y) = a′x2 + b′xy + c′y2 satisfying a′ = n.
But f and g have the same discriminant, so b′2 − 4nc′ = d, so m2 ≡ d mod 4n has a solution m = b′.

On the other hand, suppose that m satisfies m2 ≡ d mod 4n. Then there exists an integer c such that
m2 − 4nc = d. Yet then the binary quadratic form

nx2 +mxy + cy2

primitively represents n by (x, y) = (1, 0) and has determinant d by construction.
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6.4 Sums of Two and Four Squares

We will use the developed tools (in particular the fact that h(−4) = 1) to find which numbers are the sums
of two squares.

Lemma 54. A prime number p can be expressed as the sum of two squares iff p 6≡ 3 mod 4.

Proof. The only even prime is 2, which is equal to 12 + 12. Now, if p ≡ 3 mod 4, then p cannot be the sum
of two squares since the only quadratic residues mod 4 are 0 and 1, implying x2 + y2 is equivalent to 0, 1,
or 2 mod 4. Hence, it suffices to prove that all primes p ≡ 1 mod 4 are the sum of two squares.

First, let d = −4. Then p is primitively represented by a binary quadratic form with discriminant d if
there exists m satisfying m2 ≡ −4 mod 4p. Yet −1 is a quadratic residue mod any prime p ≡ 1 mod 4 (see
Corollary 42.2), so there exists m satisfying m2 ≡ −1 mod p and hence satisfying m2 ≡ −4 mod 4p.

Therefore, p is primitively represented by a binary quadratic form f(x, y) with discriminant −4. Since f(x, y)
has negative discriminant, it is definite, and since p is positive, f(x, y) must be positive definite. But then,
since h(−4) = 1, f(x, y) is equivalent to the unique reduced form x2 + y2 of discriminant −4. Hence p is
primitively represented by x2 + y2, as desired.

Theorem 55 (Two Square Theorem). A natural number n can be expressed in the form x2 + y2 for some
integers x, y if and only if every prime divisor p of n with p ≡ 3 mod 4 occurs to an even power in the prime
factorization of n.

Proof. Suppose, for the sake of contradiction, that n = x2 + y2 is divisible by a prime p ≡ 3 mod 4 to an
odd power k, and furthermore that this odd power is minimal (i.e. if n′ = x′2 + y′2 is divisible by a prime
p′ ≡ 3 mod 4 to an odd power k′, then k ≤ k′). Such a minimal k exists since any nonempty set of positive
integers has a minimal positive integer (i.e. the positive integers are well-ordered).

Now, x2 + y2 ≡ 0 mod p. Notice that we cannot have y 6≡ 0 mod p, since in this case

x2 ≡ −y2 mod p⇒
(
x

y

)2

≡ −1 mod p

which is a contradiction with Corollary 42.2. Thus y ≡ 0 mod p, which forces x2 ≡ 0 mod p and therefore

x ≡ 0 mod p. Yet then n
p2 =

(
x
p

)2

+
(
y
p

)2

is the sum of two squares and is divisible by an prime p ≡ 3 mod 4

to an odd power strictly smaller than k (precisely, k − 2), which is a contradiction.

On the other hand, suppose that every prime divisor p of n with p ≡ 3 mod 4 occurs to an even power in
the prime factorization of n. Then the result follows from noticing that every prime of the form p 6≡ 3 mod 4
is the sum of two squares, any square of a prime p2 is the sum of two squares trivially (02 + p2), and the
product of the sum of two squares is itself the sum of two squares via the following identity:

(x2 + y2)(x′2 + y′2) = (xx′ + yy′)2 + (xy′ − yx′)2.

Though we will not prove it here, Legendre and Gauss proved that a natural number is the sum of three
squares if and only if it is not of the form 4j(8k + 7) with j, k nonnegative integers. The necessity is trivial
to prove since a square is congruent to 0, 1, 4 mod 8, but we cannot prove the sufficiency without developing
the theory of ternary quadratic forms (which we will not be doing).

In fact, any natural number n can be represented as the sum of four squares, though we will not prove it
here. Key in the proof of this result is Euler’s Identity for sums of four squares, which states that

(x2 + y2 + z2 + w2)(x′2 + y′2 + z′2 + w′2) =

(xx′ + yy′ + zz′ + ww′)2 + (xy′ − yx′ + wz′ − zw′)2+

(xz′ − zx′ + yw′ − wy′)2 + (xw′ − wx′ + zy′ − yz′)2.
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Notice that this formula has the “same flavor” as the analogous identity on sums of two squares. Indeed,
there is a deep algebraic reason for this. Both of these formulas can be thought as of as expressing the
multiplicativity of a natural norm on some division algebra over the real numbers – for the sum of two
squares, it is the complex numbers C, and for the sum of four squares, it is the quaternions H.

An interesting and related problem is Waring’s problem. Formally, Waring’s conjecture states that for any
positive integer k, there exists a constant s = s(k) so that any natural number n can be represented as the
sum of s perfect kth powers of nonnegative integers. We define g(k) to be the least such s that works –
indeed g(2) = 4, g(3) = 9, g(4) = 19, etc. This was proven in 1909 by Hilbert and later in 1920 by Hardy
and Littlewood via their now-famous “circle method” (which is of course discussed later in this paper).

7 Topics in Computational Number Theory

In this section, we’ll speak about algorithms that are of interest both to computer scientists and number
theorists. In particular, we’ll offer ways to compute many of the objects we’ve spoken about earlier, and
then apply our algorithms to the case of encryption schemes. For the sake of completeness, we also discuss
quantum algorithms and post-quantum encryption, though these topics are decidely less number-theoretic.

7.1 The (Extended) Euclidean Algorithm

To explain the extended Euclidean algorithm, we will start with the ordinary Euclidean algorithm. In the
ordinary Euclidean algorithm, we begin with two integers a and b (which for simplicity we will assume are
non-negative), and attempt to find the greatest common divisor gcd(a, b).

Definition 52 (The Euclidean Algorithm). Given two non-negative integers a and b, the Euclidean algo-
rithm returns gcd(a, b). The computational complexity of this algorithm is O(log(a+b)2), according to here.

Formally, we define two sequences: a “remainder sequence {ri}” and a “quotient sequence {qi}”. We begin
with initial conditions r0 = a, r1 = b, and define ri, qi inductively as the unique non-negative integers (given
by the division algorithm) satisfying ri−2 = ri−1qi + ri and ri < ri−1. Since ri is strictly decreasing, after a
finite number of steps, there must exist some k such that rk = 0. Then gcd(a, b) is rk−1.

To see why rk−1 = gcd(a, b), notice that each new term of {ri} is a linear combination of the terms preceding
them. Since we begin with initial terms a and b, this implies that each term of {ri} is a linear combination
of a and b, and hence divides a and b. Furthermore, the final positive term of the sequence, rk−1, is the
smallest positive integer dividing a and b, hence the greatest common divisor of a and b.

Listing 1: A simple implementation of the Euclidean algorithm in Python

def euclidean_algorithm(a,b):

r = [a,b]

while True:

q = r[0]//r[1]

r = [r[1], r[0] - r[1]*q]

if r[1] == 0:

return r[0]

An important note is that the Euclidean algorithm is not actually the fastest known way to compute the
greatest common divisor, because the operation of division is more complex than operations like addition,
subtraction, or bitwise operations. Indeed, there exist other algorithms which are quicker, such as the binary
GCD algorithm. This algorithm has the same computational complexity as the Euclidean algorithm but in
practice uses less than half the bit operations (cite).

Definition 53 (Binary GCD). Given two non-negative numbers a and b, apply the following rules:

1. gcd(0, a) = a and gcd(b, 0) = 0.
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2. If a and b are even, gcd(a, b) = 2 gcd(a2 ,
b
2 ).

3. If a is even and b is odd, then gcd(a, b) = gcd(a2 , b).

4. If a is odd and b is even, then gcd(a, b) = gcd(a, b2 ).

5. If a and b are odd, then gcd(a, b) = gcd(|a− b|,min(a, b)).

This algorithm recursively returns the greatest common divisor using just comparison, subtracting, and
bitshifting (to multiply or divide by 2).

However, though the Euclidean algorithm is not the quickest practical algorithm, it’s still worth discussing
the Euclidean algorithm, because its “extension” helps us compute even more than the greatest common
divisor, and will prove useful later.

Definition 54 (The Extended Euclidean Algorithm). Given integers a and b, the extended Euclidean algo-
rithm computes integers x and y such that

xa+ yb = gcd(a, b).

Notice that when a and b are coprime, then x is the inverse of a mod b, and y is the inverse of b mod a.
Therefore, the extended Euclidean algorithm can be used to quickly (with the same computational complex-
ity as the Euclidean algorithm) compute inverses mod n.

Now, recall that we define r0 = a, r1 = b, and ri and qi recursively as the unique non-negative integers such
that ri−2 = ri−1qi + ri and ri < ri−1 (using the division algorithm). We also want to define sequences {xi}
and {yi} such that xia+ yib = ri for each i; then if rk−1 = gcd(a, b), x = xk−1 and y = yk−1.

To define {xi} and {yi}, notice that x0 = 1 and y0 = 0 satisfy x0a+ y0b = r0. Similarly, x1 = 0 and y1 = 1
satisfy x1a + y1b = r1. Therefore, these are the “initial conditions” for {xi} and {yi}. Furthermore, if we
assume rj = xja+ yjb holds for all j < i, then by applying ri−2 = ri−1qi + ri, we find that

ri = ri−2 − ri−1qi = (xi−2a+ yi−2b)− (xi−1a+ yi−1b)qi = (xi−2 − xi−1qi)a+ (yi−2 − yi−1qi)b

Hence, we define xi = (xi−2 − xi−1qi) and yi = (yi−2 − yi−1qi), and ri = xia+ yib holds for all i.

Listing 2: A simple implementation of the extended Euclidean algorithm in Python

def extended_euclidean_algorithm(a,b):

r = [a,b]

x = [1,0]

y = [0,1]

while True:

q = r[0]//r[1]

r = [r[1], r[0] - r[1]*q]

x = [x[1], x[0] - x[1]*q]

y = [y[1], y[0] - y[1]*q]

if r[1] == 0:

return (r[0],x[0],y[0])

7.2 The Repeated Squaring Method

Besides computing inverses mod n, we will soon find that there are many practical reasons (for example, in
cryptography) why one might want to compute a large power of an element mod n.

One might consider computing ak mod n by simple induction; take ak−1, multiply by a, and reduce. However,
this option is suboptimal: when k is large, this requires a large number of iterations (linear with k, and
exponential with the number of digits of k). Therefore, there exists a smarter method:
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Definition 55 (Repeated Squaring Method). To compute ak mod n, consider the binary representation of k:∑N
i=0 ki2

i. Then, repeatedly square mod n to compute a2i

mod n for each i ≤ N . Then ak ≡ ak121 · · · akN2N

.

This algorithm is efficient because we only need to square a number N − 1 times, and then only need to
multiply N + 1 numbers together. Indeed, everything we need to do has complexity at most O(N2), making
the repeated squaring method polynomial in N , the number of bits of k.

As it turns out, not only will we encounter cases where this method is useful in our study of cryptography,
but a very similar method will be defined in later dicussions on elliptic curves.

7.3 Primality Testing and Factorization

Definition 56 (Primality Test). A primality test is a test for determining if a natural number n is prime.
A probabilistic primality test does not prove that its input is prime, but rather demonstrates that it is likely
to be prime by showing that it has many “prime-like” characteristics (which are usually computationally
simple to check). On the other hand, a deterministic primality test does prove that its input is prime.

First, we will discuss a simple (but flawed) probabilistic primality test:

Definition 57 (Fermat Pseudoprime). Suppose now that n is composite and odd, and choose an integer b
which is coprime to n. Then, if bn−1 ≡ 1 mod n, we say that n is called a Fermat pseudoprime at b.

This name comes from the statement of Fermat’s Little Theorem, which states that any prime p satisfies
bp−1 ≡ 1 mod p if (b, p) = 1. The probabilistic test that we do is finding a set of coprime bases b and testing
bn−1 ≡ 1 mod n. If it ever fails, then we now that n is composite, whereas if it continues to succeed, we
might suspect that n is prime. However, there is a major flaw with this reasoning:

Definition 58 (Carmichael Number). A Carmichael number is a natural number n such that bn−1 ≡
1 mod n for all b coprime to n. The smallest example is of a Carmichael number is 651, but unfortunately
for the Fermat primality test, there are infinitely many Carmichael numbers.

Proposition 56 (Characterizing Carmichael Numbers). n is a Carmichael number if and only if n is
squarefree and for each prime p | n, (p− 1) | (n− 1).

Clearly, there are some flaws with this probabilistic test. Therefore, let’s consider another such test:

Definition 59 (Jacobi Symbol). Let n have prime factorization pa11 · · · p
ak
k . Then the Jacobi symbol of b

mod n is defined as so: (
b

n

)
=

(
b

p1

)a1
· · ·
(
b

pk

)ak
where

(
b
pi

)
is the ordinary Legendre symbol for each i.

Definition 60 (Euler Pseudoprime). Let n be composite and odd and let b be an integer such that (b, n) = 1.
We call n an Euler pseudoprime to the base b if, with the Jacobi symbol, we have:

b
n−1
2 ≡

(
b

n

)
mod n (3)

Just like Fermat pseudoprimes, this name comes from Euler’s Criterion (Proposition 42), as if n is a prime
then Euler’s Criterion guarantees that this result holds. Therefore, if n ever fails this test, we know that it’s
composite. Like the Fermat primality test, there are composite Euler pseudoprimes; for example, 703 to the
base 3. However, there is a major reason why the Euler primality test is superior:

Proposition 57. There is no composite number n which is an Euler pseudoprime for every base b.

Proof. Suppose n is square-free and has a prime divisor p. Then, let a be a quadratic nonresidue modp, and
b be a solution to the congruence x ≡ a mod p and x ≡ 1 mod n

p , which exists by the Chinese Remainder
Theorem. Then it is not difficult to check that n is not an Euler pseudoprime to the base b. On the other
hand, if n is not square-free, then p2 | n for some prime p. Then one can easily check that n is not an Euler
pseudoprime to the base b = 1 + n

p .
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Proposition 58. The probability that a composite number n passes k trials with different random bases b
is at most 1

2k . This does not mean that there is a probability of at most 1
2k that it is composite. Instead,

Bayesian probability using the approximate density of primes near n as a prior is the best way to approximate
the chance that n is prime.

Proof. If n is an Euler pseudoprime to bases b and b′ then the multiplicative property of the Jacobi symbol
guarantees it is not an Euler pseudoprime to the base bb′. Thus at most half of the b with 0 < b < n and
(b, n) are bases which n is an Euler pseudoprime to, and the result follows.

This concludes our discussion of primality testing. To learn more about primality testing (including de-
terministic tests), read this bachelor’s project. In fact, there does exist a deterministic polynomial-time
primality test, the AKS primality test. However, the AKS primality test is complex and beyond the scope
of this discussion (though it is in the linked bachelor’s project).

Next, we’ll discuss two simple methods which are usually an improvement over the naive method of factoring.
However, they are not a general efficient method, as their worst case scenarios can be quite inefficient.

Definition 61 (Fermat Factorization). Suppose n is odd and n = ab with a ≥ b > 0. Then, n = r2 − s2

with r = a+b
2 and s = a−b

2 . Conversely, if we can express n as r2 − s2, then n = ab with a = r + s and
b = r − s. When a and b are close together, s is small, so r2 will only be slightly bigger than n. Therefore,
we let r = b

√
nc , b

√
nc+ 1, b

√
nc+ 2, . . . and check for each option if r2 − n is a perfect square s2. If it is,

we have a factorization of n as (r + s)(r − s). Then, we might recursively factor (r + s) and (r − s).

However, Fermat factorization is not usually applied in such a direct manner. Instead, we try to find integers
r, s such that r2 ≡ s2 mod n. Then (r − s, n) and (r + s, n) (if they are nonzero) are proper divisors of n.
Notice that until r ≡ s ≡ 0, then at least one of these is guaranteed to be nonzero. Thus, to factor numbers,
one may use this method instead of Fermat factorization. To implement this method efficiently and reliably,
we define Fermat bases, covered in Section 9.4 of Baker’s A Comprehensive Course in Number Theory.

Definition 62 (Pollard’s p− 1 method). Let n be a composite positive integer. If some prime factor p of n
has the property that p− 1 has no large prime divisor, then there is a method that will almost always easily
find p. Pollard’s method is done as follows:

1. Choose an integer bound K.

2. Let k be divisible by all the integers not exceeding K (so k = K! or k = lcm(2, . . . ,K), for example).

3. For any integer a with 1 < a < n− 1, we find ak mod n and compute (ak − 1, n).

4. If the result is nontrivial, we have found a factor of n. Otherwise, we will try again with different a,
and if necessary change the integer bound K (usually increasing it) until we get the desired result.

To see why Pollar’s p− 1 method works, consider the following. If k is divisible by all integers up to K, and
p− 1 is divisible only by prime powers less than K, then p− 1 divides k. Hence, by Fermat’s Theorem, we
have ak ≡ 1 mod p for all integers a with (a, p) = 1. Hence (ak − 1, n) is divisible by p and is also a proper
divisor of n unless ak ≡ 1 mod n.

As an example, consider n = 212899. Let K = 7 and thus k = 420. Now we pick a = 2 and note
ak = 2420 ≡ 54861 mod n and (54860, n) = 211. Then division allows us to see that n = 211× 1009.

7.4 Encryption Using Modular Arithmetic

Two easy-to-understand encryptic methods are the Diffie-Hellman and RSA encryption processes. As you
read, try to notice the places where the algorithms we discussed previously might be used.

Definition 63 (Diffie-Hellman Key Exchange). Suppose Alice and Bob both publicly agree on a base c and
a modulo p, usually such that c is a primitive root mod p. Alice chooses a secret number a and Bob chooses a
secret number b. Then, they both compute ca mod p and cb mod p respectively, sharing the result with each
other publicly. Finally, they compute cab mod p privately, being the only ones who now know this number.
This key can be used in any number of symmetric encryption schemes.
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This process is secure because it is difficult for modern-day computers to find a given c mod p and ca mod p;
this is called the discrete logarithm problem, and there is no known polynomial-time algorithm for solving
it. Notice that the stipulation “mod p” is crucial; given c and ca, it is quite easy for computers to calculate
a to a very high accuracy with the ordinary logarithm. However, as the prime p has more and more digits
(often upwards of 600), it is practically impossible to solve the discrete logarithm problem.

Definition 64 (RSA Encryption). Suppose Alice chooses two large primes p and q and computes pq = n.
It is not difficult for her to compute φ(n) = (p− 1)(q − 1), but an outsider would have difficulty doing this
given only n (since they would have to factor n, which is very difficult if it has hundreds of digits).

Now, choose m < φ(n) with (m,φ(n)) = 1. Let l be the smallest solution to lm ≡ 1 mod φ(n). The pair
(n,m) form the public key and l forms the private key. Then, if someone wants to send you a message encoded
as a number 0 < C ≤ n, they publicly send you Cm mod n. Then, you raise their message Cm to the lth
power, netting Cml ≡ C1+kφ(n) ≡ C mod n. Note that here we use Euler’s Theorem, Cφ(n) ≡ 1 mod n.

In any case, you have now recovered the decrypted text C while only receiving the cyphertext Cm. Fur-
thermore, anybody seeking to find C from the cyphertext Cm would need to compute φ(n), which is quite
difficult as no polynomial-time algorithm for factorization is known.

Interestingly, RSA is also symmetric in the sense that one can use the private key to send a message
decryptable with the public key. This is an interesting method of identity verification, as the ability to
encode a previously-agreed upon message is identical to the ability to decode a private message – since l and
m are symmetrically inverses mod φ(n).

7.5 Defining Elliptic Curves

Let k be a field with characteristic not equal to 2 or 3. For the purposes of our discussion, we will define
elliptic curves purely algebraically; a full definition would require a substantial amount of topology beyond
the purposes of our discussion.

Definition 65 (Elliptic Curves over k). An elliptic curve over a field k is the set of solutions (x, y) ∈ k2 to
an equation of the form y2 = x3 + ax+ b, where a, b ∈ k must satisfy the following requirement:

4a3 + 27b2 6= 0.

This definition may initially seem contrived, but ultimately there are good reasons for each the choices we
made in this definition. The fact that we restrict to equations of the form y2 = x3 + ax+ b is a product of
the fact that any arbitrary cubic (degree 3) curve, that is, any equations of the form

Ay3 +By2x+ Cyx2 +Dx3 + Ey2 + Fxy +Gx2 +Hx+ Iy + J = 0

can be rearranged into an equation of the form y2 = x3 + ax+ b using changes in variables.

As for the choice to require 4a3+27b2 6= 0, this axiom is required to ensure the resulting curve is non-singular.
A singular point on an algebraic curve F (x, y) is a point where the partial (algebraic) derivatives ∂F

∂x and
∂F
∂y both vanish. It’s significant because there is no unique tangent line to the curve at singular points; as
we’ll soon see, the existence of unique tangent lines is very important for the group law we will define on
elliptic curves, so requiring the curve to be non-singular (i.e. to have to singular points) is not just natural,
but necessary. Following are some images of non-singular (left) and singular (right) cubic curves:
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Definition 66 (Point at Infinity). For elliptic curve y2 = x3 + ax + b over k, we append an ideal point at
infinity, which we denote by 0. Geometrically, one can imagine the point at infinity as existing infinitely far
above the origin, but formally speaking this is not part of the definition.

Definition 67 (Group Law). We define the group law on an elliptic curve E by the following facts:

1. 0, the point at infinity, is the identity element, and we define P + 0 = P + 0 = P for any point P on E.

2. The additive inverse of a point P = (x, y) is the reflection of P across the x-axis: −P = (x,−y).

3. Any three nonzero colinear points have zero sum; that is, if P , Q, and R are nonzero, then P+Q+R = 0.

Notice that (3) demonstrates how to add any two distinct nonzero points P and Q; find the third point R
on E which lies on the line PQ, and then P + Q + R = 0 implies P + Q = −R. Similarly, finding P + P
for any nonzero point P is also simple; take the tangent line to the curve at P , which intersects the curve
at another point R, and then P + P = −R. This latter discussion makes it clear why we needed to define
elliptic curves as nonsingular; otherwise, there would be a chance that P + P would not be well-defined.

Proposition 59. The group law on an elliptic curve E satisfies the axioms of a group.

Proof. Trivial, left as an exercise to the reader.

Theorem 60 (Adding Distinct Points). Given two distinct points P = (xP , yP ) and Q = (xQ, yQ) on an
elliptic curve E, either xP = xQ and yP = −yQ (so that P +Q = 0), or the slope of PQ is

m =
yP − yQ
xP − xQ

and the coordinates of the third point R = (xR, yR) on E and PQ is

xR = m2 − xP − xQ yR = yP +m(xR − xP ).

Then P +Q = −R = (xR,−yR).

Proof. It suffices to check that R satisfies the cubic equation and P , Q, and R are distinct and aligned.

Theorem 61 (P + P ). Given a point P = (xP , yP ) on an elliptic curve E with equation y2 = x3 + ax+ b,
either yP = 0 (in which case P = −P so that P + P = 0), or the slope of the tangent line to E at P is

m =
3x2

P + a

2yP

and then the other point R = (xR, yR) on E and the tangent line to E at P is again

xR = m2 − xP − xQ yR = yP +m(xR − xP ).

Then P + P = −R = (xR,−yR).
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Proof. It suffices to check that the point R satisfies the cubic equation, and that P and R are distinct and
the only points on PR also on E.

Definition 68 (Double and Sum Algorithm). Suppose that we are given a point P on an elliptic curve E,
and a large positive integer c. Then, computing cP naively (by adding P a total of c times) is inefficient;
instead, we use an algorithm analogous to the Repeated Squaring Method (Definition 55) to compute cP .

Namely, suppose that c has binary expansion
∑n
i=0 ci2

i. Then, we compute 2P = P + P , 4P = 2P + 2P ,
8P = 4P + 4P , and so on until we get to 2iP . Then it simply suffices to compute

cP = c0(P ) + c1(2P ) + c2(4P ) + · · ·+ ci(2
iP ).

Definition 69 (The Discrete “Logarithm” Problem on Elliptic Curves). The normal discrete logarithm
problem is the task of finding b given a mod p and ab mod p. The discrete logarithm problem on elliptic
curves is the task of finding the constant c given a point P and cP on an elliptic curve over a finite field
(usually Fp, the field of integers modulo a prime p, for p > 3).

Just like the ordinary discrete logarithm problem, the discrete logarithm problem on elliptic curves is thought
to be computationally “hard”, and no algorithm that can solve it quickly is known. The further benefit of
using elliptic curves is that the discrete logarithm problem for elliptic curves is thought to be even more
difficult, and therefore we can use smaller keys to get the same amount of security. Consider, for example,
the National Institute of Standards and Technology’s table of comparative security, which finds that

Bits of Security Bits in Public Key of DSA Bits in the Key of ECDSA
80 1024 160-223
112 2048 224-255
128 3072 256-383
192 7680 384-511
256 15360 512+

Table 1: Encryption Schemes with Comparable Strength

ECDSA is a type of elliptic-curve cryptography which we will discuss in the next section.

7.6 Elliptic Curve Cryptography

1. Finding order of elliptic curve 2. Finding period of elements 3. Finding element with a large period 4.
Verifiably random 5. Public and private keys 6. ECDH 7. ECDSA

8 Miscellaneous

Following are a few various number-theory related digressions:

8.1 Perfect Numbers and Mersenne Primes

Definition 70 (Perfect Numbers). A natural number n is perfect if the sum of the divisors of n is 2n; that
is, if σ(n) = 2n.

The two smallest perfect numbers are 6 and 28. It is an open question whether or not there are any odd
perfect numbers (as all the ones we’ve found are even, and papers have checked up to 101500), as well as
whether or not there are infinitely many perfect numbers.

Definition 71 (Mersenne Primes). A prime number p ∈ Z+ is called a Mersenne prime if p = 2q − 1 for
some prime number q. It is an open question if there are infinitely many Mersenne primes.

29

https://www.ams.org/journals/mcom/2012-81-279/S0025-5718-2012-02563-4/S0025-5718-2012-02563-4.pdf


It turns out there is an interesting correspondence between Mersenne primes and even perfect numbers. To
prove this correspondence, we will need the following lemma on divisibility:

Lemma 62 (Power Divisibility). Suppose x is an integer, and m and n are integers such that m | n. Then,

xm − 1 | xn − 1.

Proof. Notice that the following polynomial identity holds under the assumption that m divides n.

Xn − 1 = (1 +Xm +X2m + · · ·+Xn)(Xm − 1).

By substituting an integer x for the indeterminate X, we notice that xn−1 is an integer multiple of xm−1.

Proposition 63 (Perfect Numbers and Mersenne Primes). An even number is perfect if and only if it has
the form 2p−1(2p − 1), where both p and 2p − 1 are primes. In other words, any even perfect number gives
arise to a Mersenne prime (the unique odd prime factor of the even perfect number is a Mersenne prime),
and any Mersenne prime 2p − 1 gives rise to an even perfect number, namely 2p−1(2p − 1).

Proof. To prove “if”, suppose that n = 2p−1(2p − 1), where p and 2p − 1 are prime. Then by Proposition
17, the σ function is multiplicative, so

σ(2p−1(2p − 1)) = σ(2p−1)σ(2p − 1) = (1 + 2 + · · ·+ 2p−1) · (2p) = (2p − 1)(2p) = 2n.

To prove “only if”, suppose that n is even and σ(n) = 2n. Then, we can express n = 2km, where k and m
are positive integers and m odd. Then,

2k+1m = 2n = σ(n) = σ(2km) = (2k+1 − 1)σ(m)

In summary, 2k+1m = (2k+1 − 1)σ(m). Since 2k+1 and 2k+1 − 1 are coprime, we may conclude that
σ(m) = 2k+1l and m = (2k+1 − 1)l for some positive integer l. Notice that l also satisfies σ(m) = m + l.
Yet if l > 1, then since l divides m, σ(m) ≥ m + l + 1, which contradicts σ = m + 1. Hence l = 1, so
σ(m) = m + 1, implying that m is prime and equal to 2k+1 − 1. Then, by Lemma 62, we must have that
k + 1 = p is prime. Yet then n = 2p−1(2p − 1) is such that p and 2p − 1 is also prime, as desired.

8.2 Diophantine Approximations

One topic of interest is the approximation of arbitrary real numbers by rational numbers with sufficiently
small denominators. A basic result on the matter follows from the Pigeonhole Principle.

Theorem 64. Let r be a real number, and take an integer N > 1. Then there exist integers p and q with
0 < q < N such that |qr − p| ≤ 1

N .

Proof. Let {x} = x−bxc for each real number x. Then, consider the N+1 numbers 0, 1, {r}, {2r}, . . . , {(N−
1)r}. These numbers all lie in the set [0, 1], so by the Pigeonhole Principle at least two of them must lie
in one of the N intervals [0, 1

N ], [ 1
N ,

2
N ], . . . , [N−1

N , 1]. Then, the difference of these numbers has the form
qr (for some 0 < q < N) and has fractional part within 1

N of 0. Hence there exists an integer p such that
|qr − p| ≤ 1

N , as desired.

Corollary 64.1 (Dirichlet’s Theorem). Take a real number r, and another real number N ≥ 1. Then there
exist integers p and q such that 0 < q ≤ N and

|qr − p| < 1

N
.

Proof. Follows trivially by using Theorem 64 on bNc+ 1, as it will find integers p and q such that 0 < q <
bNc+ 1 (whence 0 < q ≤ N) such that |qr − p| ≤ 1

bNc+1 <
1
N .

Corollary 64.2. Notice that p and q can be chosen to be relatively prime (since if they have a common
factor, dividing it out gets a strictly better result). Therefore, when r is irrational, there are infinitely many
distinct rational numbers p

q such that ∣∣∣∣r − p

q

∣∣∣∣ < 1

q2
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Proof. For any integer N > 1, there are coprime integers p, q with
∣∣∣r − p

q

∣∣∣ ≤ 1
Nq < 1

q2 . Furthermore, if

r is irrational, then the rational generated by considering N ′ > 1
|qr−p| will be new p′

q′ . Therefore, we can

inductively generate an infinite list of rational numbers that closely approximate r.

Note this is not generally true when r is rational.
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