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1 The Basics

Convention: The set of natural numbers is the set N = {0, 1, 2, . . . } (in particular, it includes 0).

In these notes, we will focus on the basics of “combinatorics”, the math of counting. We will focus
on basic techniques such as double-counting, which is a way to prove that two things are equal by
showing that they enumerate the same set. In later sections, we will approach more advanced topics,
setting ourselves up to begin studying Algebraic Combinatorics in another set of notes.

Definition 1 (n-sets). Given a natural number n, we say a set S is an n-set if |S| = n. The
prototypical example of an n-set (for n ≥ 1) is {1, . . . , n}, which we denote as [n]. Indeed, consideration
of any n-set reduces (under relabeling) to consideration of [n].

Definition 2 (Permutation). A permutation on an n-set is a bijection from the set to itself, which
equates to an “ordering” of the set. We denote the number of permutations of an n-set by n!.

Lemma 1. 0! = 1 and n! = n · (n− 1) · · · 2 · 1 for all n ≥ 1.

Proof. Trivial, left as an exercise to the reader.

Lemma 2 (Rearrangement Inequality). If A = {a1, . . . , an} and B = {b1, . . . , bn} are lists of non-
negative real numbers and σ, τ are permutations of [n], then the quantity

aσ(1)bτ(1) + aσ(2)bτ(2) + · · ·+ aσ(n)bτ(n)

is maximized when σ and τ are the permutations which put A and B in increasing order.

Proof. Trivial, left as an exercise to the reader.

Theorem 3 (AM-GM Inequality). For any set of nonnegative real numbers {a1, . . . , an}, the arith-
metic mean of the set is greater than or equal to the geometric mean of the set. Symbolically,

a1 + · · ·+ an
n

≥ n
√
a1 . . . an

Proof. Assume without loss of generality that a1 ≤ a2 ≤ · · · ≤ an. Then define the sequence {rij}ni=1

as rij = n
√
ai for all integers 1 ≤ i, j ≤ n.∑

i

ai =
∑
i

∏
j

rij

Since these sequences are sorted in ascending order, by the Rearrangement Inequality,∑
i

∏
j

rij ≥
∑
i

∏
j

ri,i+j = n
∑

n
√
ai

with equality precisely when all the rij and thus all the ai are equal, whence the result follows.

Lemma 4. For all n > 1, (n
e

)n
< n! < e

(n
2

)n
Proof. We will first prove that n! >

(
n
e

)n
for all positive integers n. To do this, notice that in the

case n = 1, the result is true. Now assume it is true for n = k: we will prove it is true for n = k + 1.
To do this, consider:

(k + 1)! = (k + 1)k! > (k + 1)

(
k

e

)k
=

(k + 1)kk

ek
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But by the definition of e, (k+1)k

kk
=
(
1 + 1

k

)k
< e for all positive k. This implies that (k+1)kk

ek
>

(k+1)k+1

ek+1 =
(
k+1
e

)k+1
so by induction the first inequality follows.

Now notice that the AM-GM inequality on {1, . . . , n} implies that n! <
(
n+1
2

)n
= (n+1)n

2n for n > 1.

But again notice that (n+1)n

nn =
(
1 + 1

n

)n
< e for all positive n, which means that n! < e

(
n
2

)n
and

the entire result follows.

1.1 The Binomial Coefficient

Definition 3 (Binomial Coefficient). For a natural number n and integer k, the binomial coefficient(
n
k

)
is defined to be the number of k-element subsets of an n-set (in particular, if k is negative or

larger than n,
(
n
k

)
= 0 as there are no such subsets).

Lemma 5. If n is a natural number and 0 ≤ k ≤ n, then:(
n

k

)
=

n!

k!(n− k)!

Proof. Every permutation π of [n] induces a k-element subset {π(1), π(2), . . . , π(k)}. Clearly, this is
a surjective map from the set of permutations to the k-element. However, the order of the first k
elements does not matter. Similarly, the order of the last n− k elements also does not matter. Thus
k!(n−k)! permutations generate the same k-element subset, so the total number of k-element subsets
is n!

k!(n−k)! , as desired.

Theorem 6. Following are some properties of the binomial coefficient for any n, k:

1.
(
n
k

)
=
(
n

n−k
)

2.
∑n
k=0

(
n
k

)
= 2n

3. k
(
n
k

)
= n

(
n−1
k−1
)

4.
(
n+1
k

)
=
(
n
k−1
)

+
(
n
k

)
5.
∑n
k=0

(
n
k

)2
=
∑n
k=0

(
n
k

)(
n

n−k
)

=
(
2n
n

)
Proof. Trivial, left as as an exercise to the reader. Try finding a combinatorial and an algebraic proof
for each identity!

Theorem 7 (Binomial Theorem). Given an indeterminate t,

(1 + t)n =

n∑
k=0

(
n

k

)
tk

More generally, given indeterminates x and y,

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k

Proof. Write
(1 + t)n = (1 + t)(1 + t)(1 + t) · · · (1 + t)︸ ︷︷ ︸

n

.

Via the distributive property, we see that for a term tk, we must choose k of the n terms to contribute
a t to the term. Thus, the coefficient of tk is precisely

(
n
k

)
. Extending this to all 0 ≤ k ≤ n, the first

result follows. The reader is encouraged to follow the logic through to prove the second formulation
and to try to prove both via mathematical induction.
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Corollary 7.1. The number of even-size subsets of a set of size n is the same as the number of
odd-size subsets.

Proof. By the binomial theorem 0 = (1− 1)n =
∑n
k=0

(
n
k

)
(−1)k. In other words,

∑
k even≤n

(
n

k

)
=

∑
k odd≤n

(
n

k

)
which is precisely the result desired.

1.2 More Basic Counting

Theorem 8. The various numbers of ways to select k objects from an n-set under certain distin-
guishability rules are given by the following table:

Order significant Order not significant

Repetitions allowed nk
(
n+k−1

k

)
Repetitions not allowed n!

k!

(
n
k

)
Proof. Trivial, left as an exercise for the reader (except for the case of order doesn’t matter with
repetitions allowed, which we will now cover).

Lemma 9. The number of choices of k objects from an n-set with repetitions allowed and order not
significant is equal to the number of ways of choosing n nonnegative integers whose sum is k.

Proof. Given a choice of k objects from the set a1, . . . , an, let xi be the number of times that the
object ai gets chosen. This induces a bijective correspondence between n-tuples of nonnegative integers
summing to k and such choices, as desired.

Lemma 10. The number of n-tuples of nonnegative integers x1, . . . , xn with x1 + · · ·+ xn = k is(
n+ k − 1

n− 1

)
=

(
n+ k − 1

k

)
Proof. Put n+ k − 1 and fill n− 1 of them with markers. Let x1 be the number of spaces before the
first marker, x2, be the number of spaces between the first and second marker, and so on. This induces
a bijective correspondence between the n-tuples that sum to k and the choosing of n − 1 markers in
a set of n+ k − 1 spaces, whence the result follows.

Corollary 10.1. This implies that the number of ways to select k objects from an n-set with repetitions
allowed where order doesn’t matter is

(
n+k−1

k

)
.

Theorem 11. The number of ordered selections without repetition from a set of n objects in be · n!c.

Proof. The number N in question is just
∑n
k=0

n!
k! = n!

∑n
k=0

1
k! . But notice that e · n!−N < 1

n ≤ 1,
so be · n!c = N , as desired.

1.3 Pascal’s Triangle and Its Properties

Definition 4 (Pascal’s Triangle). Pascal’s triangle is the standard way to write out the binomial
coefficients, as so:
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Thus
(
n
k

)
is element k element in row n (if we index from 0).

Theorem 12. Let p be a prime and let m = a0 + a1p + · · ·+ akp
k, n = b0 + b1p + · · ·+ bkp

k where
0 ≤ ai, bi < p for i = 0, . . . , k − 1. Then:(

m

n

)
≡

k∏
i=0

(
ai
bi

)
mod p

Proof. It suffices to prove that if m = cp+ a and n = dp+ b, where 0 ≤ a, b < p, then:(
m

n

)
≡
(
c

d

)(
a

b

)
mod p

Since then induction proves the result. Recall that (1 + t)p ≡ 1 + tp mod p (as formal polynomials).
But then:

(1 + t)m = (1 + t)cp(1 + t)a

≡ (1 + tp)c(1 + t)a

=

c∑
i=0

(
c

i

)
tpi ·

a∑
j=0

(
a

j

)
tj

But the only way to get a term tn = tdp+b is to take the term i = d in the first sum and j = b in the
second, whence: (

m

n

)
≡
(
c

d

)(
a

b

)
mod p

as required.

For example, Pascal’s Triangle mod 2 has the following structure:

This extends to make the Sierpinski triangle as we add more and more lines to our diagram, a beautiful
connection!
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1.4 The Principle of Inclusion and Exclusion

Theorem 13 (Principle of Inclusion and Exclusion). Let (A1, . . . , An) be a family of subsets of X.
Then the number of elements of X which lie in none of the subsets Ai is:∑

I⊆[n]

(−1)|I||AI |

Proof. Trivial, left as an exercise for the reader. If you lack intuition, draw Venn diagrams with
progressively more circles and see how to count the space outside all the circles.

Corollary 13.1. The number of surjective mappings from an n-set to a k-set is given by:

k∑
i=0

(−1)i
(
k

i

)
(k − i)n

In particular, since a surjective mapping from an n-set to itself is a permutation,

n! =

n∑
i=0

(−1)i
(
n

i

)
(n− i)n

Proof. Take X to be the set of all mappings from [n] to [k], so |X| = kn. For i = 1, . . . , k, let Ai be
the set of mappings f for which the point i does not lie in the range of f . Then |Ai| = (k − 1)n and
more generally |AI | = (k − |I|)n. By PIE, we see that the number of surjections is equal to∑

I⊆[k]

(−1)|I|(k − |I|)n

The result follows from noticing there are
(
k
i

)
sets I of cardinality i and summing 1 to k.

Definition 5 (Derangement). A derangement of [n] is a permutation π of [n] with no fixed point
(that is, there is no i ∈ [n] with π(i) = i). We denote the number of derangements of n-set by d(n).

Theorem 14. The number of derangements of [n] is equal to:

d(n) = n!

n∑
i=0

(−1)i

i!

Proof. Let X be the set of permutations and Ai the set of permutations fixing the point i. Thus
|Ai| = (n− 1)! and more generally |AI | = (n− |I|)!. Thus the number of derangements is:

∑
I⊆[n]

(−1)|I|(n− |I|)! =

n∑
i=0

(−1)i
(
n

i

)
(n− i)! = n!

n∑
i=0

(−1)i

i!
.

Corollary 14.1. d(n) is equal to the nearest integer to n!/e for n ≥ 1.

Proof. Trivial from using the Taylor series for ex, left as an exercise for the reader.
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2 Recursion

Definition 6 (Fibonnaci Numbers). The Fibonacci numbers is the sequence of natural numbers given
by F0 = F1 = 1 and Fn = Fn+1 + Fn+2. The Fibonacci sequence begins 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

The Fibonacci numbers are the classic example of a sequence given first by a “recurrence relation”
and only secondly by some closed-form equation.

Definition 7 (Recurrnece Relations). A (k + 1)-recurrence relation for a sequence g with terms
g0, g1, . . . is a relation giving gn in terms of gn−1, gn−2, . . . , gn−k. Clearly, given such a relation, g is
uniquely determined by its first k values – whether that is G0, . . . , Gk−1 or G1, . . . , Gk.

Thus, the Fibonacci numbers’ recurrence relation is a 3-term recurrence relation, since Fn is given in
terms of Fn−1 and Fn−2.

2.1 Generating Functions

Definition 8 (Generating Function). Given a sequence s0, s1, . . . , we say the formal power series
φ(t) =

∑
n≥0 snt

n is the (standard) generating function for s.

Definition 9 (Exponential Generating Function). Given a sequence s0, s1, . . . , we say the formal
power series ψ(t) =

∑
n≥0

snt
n

n! is the exponential generating function for s. Notice that the formal
algebraic derivative A′(t) is the exponential generating function of the new sequence s′ = s1, s2, . . . .

2.2 The Fibonacci Numbers

We will first document some number of places where the Fibonnaci numbers arise:

Theorem 15. The number of ways to write n ∈ N as the ordered sum of 1s and 2s is Fn.

Proof. We will denote the number of ways to write a natural number n as the sum of 1s and 2s as
S(n). By our note in the last section, it suffices to show that S(0) = S(1) = 1 and that S(n) =
S(n− 1) + S(n− 2). Clearly, the initial conditions are the same: the only sum of 1s and 2s equalling
0 is the empty sum, and the only sum of 1s and 2s equalling 1 is 1. There are two cases for ordered
sums equalling n:

1. The first number is 1. In this case, there are S(n− 1) completions of the rest of the sum.

2. The first number is 2. In this case, there are S(n− 2) completions of the rest of the sum.

Thus S(n) = S(n− 1) + S(n− 2), and the result follows.

Theorem 16. The worst-case input (with respect to the size of the inputs) for the Euclidean algorithm
is a difference of two Fibonacci numbers.

Proof. This follows beautifully and simply from induction. Left as an exercise to the reader.

Theorem 17 (Zeckendorf’s Theorem). Every positive integer can be written in a unique way as the
sum of one or more distinct Fibonacci numbers in such a way that the sum does not include any two
consecutive Fibonacci numbers.

Proof. Again, a simple induction proof. Left as an exercise to the reader.

Theorem 18. The limit of the terms Fn+1/Fn is the golden ratio φ = 1+
√
5

2 .

Proof. Note that clearly 1 < L ≤ 2. Now let L = limn→∞ Fn+1/Fn = limn→∞ 1 + Fn−1

Fn
= 1 + 1

L .

Thus L2 − L− 1 = 0 and by the quadratic formula (and the fact that L > 0) L = 1+
√
5

2 .
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Theorem 19.

Fn =

(√
5 + 1

2
√

5

)(
1 +
√

5

2

)n
+

(√
5− 1

2
√

5

)(
1−
√

5

2

)n
Proof. Let φ(t) be the power series φ(t) =

∑
n≥0 F (n)tn. Notice that tφ(t) =

∑
n≥1 F (n − 1)tn and

similarly t2φ(t) =
∑
n≥2 F (n− 2)tn. This, together with comparison of the 1 and t terms, implies:

φ(t) = 1 + (t+ t2)φ(t)⇒ φ(t) =
1

1− t− t2

Now let α = −1+
√
5

2 and β = −1−
√
5

2 be the roots of 1− t− t2, so:

φ(t) =
−1

(α− t)(β − t)
=

a

α− t
+

b

β − t

whence, by multiplying through by (α− t)(β − t), we see that:

−1 = a(β − t) + b(α− t)

whence a + b = 0 and aβ + bα = −1. This implies aα + bα = 0, whence a(α − β) = 1 ⇒ a = 1√
5
⇒

b = −1√
5
. But notice that we can rearrange φ(t) in the following manner:

φ(t) =
a

α− t
+

b

β − t
=

a/α

1− t/α
+

b/β

1− t/β
=
a

α
(t/α)n +

b

β
(t/β)n

Thus Fn = a
α

(
1
α

)n
+ b

β

(
1
β

)n
. Finally, notice that 1

α = 1+
√
5

2 and 1
β = 1−

√
5

2 , whence:

Fn =

(√
5 + 1

2
√

5

)(
1 +
√

5

2

)n
+

(√
5− 1

2
√

5

)(
1−
√

5

2

)n

2.3 Solving Linear k-Recurrence Relations

We now document the general solution of a linear recurrence relation of the form F (n) = a1F (n−1)+
. . . akF (n− k). Start by supposing that F (n) = αn is a solution to this equation. Then it is not hard
to see that α works if and only if it is a root of the characteristic equation 0 = −xk+a1x

k−1 + · · ·+ak.

Now we will try to find k “fundamental solutions” A1(n), . . . Ak(n). For each root αi with multiplicity
di, we take the fundamental solutions αni , nα

n
i , . . . , n

d−1αni . By the Fundamental Theorem of Algebra,
we end up with k fundamental solutions. Any solution of the general linear recurrence relation will
then take the form:

b1A1(n) + · · ·+ bkAk(n)

for some coefficients b1, . . . , bk. It is easy to find these coefficients using the initial conditions for the
recurrence relation.

We now offer another proof of the “useless theorem” (the closed-form expression for the Fibonacci
numbers).

Theorem 20.

Fn =

(√
5 + 1

2
√

5

)(
1 +
√

5

2

)n
+

(√
5− 1

2
√

5

)(
1−
√

5

2

)n
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Proof. Our recurrence relation Fn = Fn−1 + Fn−2 has characteristic equation 0 = −x2 + x + 1 and

hence (by the quadratic formula) roots 1+
√
5

2 and 1−
√
5

2 . Thus a closed-form expression has the form:

b1

(
1 +
√

5

2

)n
+ b2

(
1−
√

5

2

)n
From the initial conditions F0 = F1 = 1, it is trivial to find b1 and b2 and verify the result.

2.4 Derangements and Involutions

We will use recurrence relations to to offer another proof of our formula for the number of derangements
of an n-set. Recall that our initial parameters will be d(0) = 1, d(1) = 0.

Lemma 21.
d(n) = (n− 1)(d(n− 1) + d(n− 2))

Proof. Consider an arbitrary permutation π and let π(1) = i. There are two cases for π(i):

1. π(i) = 1. In this case, there are d(n− 2) ways to complete the derangement.

2. π(i) 6= 1. In this case, there are d(n − 1) ways to complete the derangement (essentially, one
imagines 1 and i as the same in terms to needing to avoid sending i to 1 under π).

But there were (n− 1) choices for π(1), so d(n) = (n− 1)(d(n− 1) + d(n− 2)), as desired.

Theorem 22. The number d(n) of derangements of an n-set is given by

d(n) = n!

(
n∑
i=0

(−1)i

i!

)

Proof. Let f(n) denote the RHS. It is trivial to check that f(0) = 1, f(1) = 0 (i.e. d(n) and f(n)
satisfy the same initial values). Then all we must do is show that f(n) satisfies the same recursive
relation as d(n):

(n− 1)(f(n− 1) + f(n− 2)) = (n− 1)(n− 1)!

(
n−1∑
i=0

(−1)i

i!

)
+ (n− 1)(n− 2)!

(
n−2∑
i=0

(−1)i

i!

)

= (n− 1)(n− 1)!

(
n∑
i=0

(−1)i

i!
− (−1)n

n!

)
+ (n− 1)!

(
n∑
i=0

(−1)i

i!
− (−1)n−1

(n− 1)!
− (−1)n

n!

)

= n!

(
n∑
i=0

(−1)i

i!

)
− (n− 1)(−1)n

n
− (−1)n−1 − (−1)n

n
= n!

(
n∑
i=0

(−1)i

i!

)
− (−1)n − (−1)n−1

= n!

(
n∑
i=0

(−1)i

i!

)
= f(n)

whence by induction f(n) = d(n) for all n.

Definition 10. A permutation of a set is called an involution if it is its own inverse; that is π : S → S
is an involution on S if π(π(S)) = idS . We denote the number of involutions on an n-set by s(n).

Lemma 23.
s(n) = s(n− 1) + (n− 1)s(n− 2)

Proof. There are two cases for an involution π on [n]:

9



1. π fixes n. There are s(n− 1) such permutations.

2. π does not fix n. That is, it is swapped with some i. There are n − 1 choices for this i and
s(n− 2) possible completions, so there are (n− 1)s(n− 2) such permutations.

The result follows.

Proposition 24. For every n > 1, s(n) is even.

Proof. Note that s(2) = 2 and s(3) = s(2)+2s(1) = 4. The result follows immediately from induction
and the recurrence relation.

Proposition 25. s(n) >
√
n! for all n > 1.

Proof. Notice that s(2) = 2 >
√

2!. Now assume the result holds for all n > k; we seek to prove it
for n = k. To do this, note that by hypothesis and our recurrence relation s(k) >

√
(k − 1)! + (k −

1)
√

(k − 2)!. This can be simplified to s(k) > (
√
n− 1 + 1)

√
(n− 1)! >

√
n
√

(n− 1)! =
√
n!, which

proves the result for n = k, as desired.

Definition 11. The double factorial of a positive integer n, denoted n!!, is the product of all positive
integers less than or equal to n with the same parity as n. For example, 6!! = 6 · 4 · 2 = 48. Notice
that if n is even, then n!! = n!2n/2.

Theorem 26. The number of involutions on an n-set is:

bn/2c∑
k=0

(
n

2k

)
(2k − 1)!!

Proof. Let τ ∈ Sn be an involution on [n] and write it as a product of disjoint cycles. Since it has
order 1 or 2, it cannot contain any cycles of order 3 or more, so it must be a product of disjoint
transpositions. Now suppose that τ is a product of k disjoint transpositions. We must choose the 2k
permutes elements and then group the 2k letters into k pairs. Thus, there are

(
n
2k

)
(2k−1)!! involutions

that are products of k disjoint transpositions. Summing from k = 0 (the identity) to bn/2c gives the
desired result.

2.5 Quicksort Via Generating Functions

Definition 12 (Quicksort). Suppose one has a list L and seeks to sort it. Then the Quicksort
algorithm to sort this list is as follows:

1. Let a be the first item of L.

2. Partition the rest of the list into sublists L−, L+ consisting of the elements less than and greater
than a respectively.

3. Sort L− and L+ (trivial once they are empty) and return (L− sorted, a, L+sorted).

Theorem 27. The average number of comparisons needed to sort a list of length n is 2n log(n)+O(n).

Proof. Let the average number of comparisons required to sort a list of length n be denoted qn. Notice
that the first step takes n− 1 comparisons. If an is the kth smallest element, the other steps requires
an average of qk−1 + qn−k comparisons. Thus, the total average other steps required is the average
over all k, so:

qn = n− 1 +
1

n

n∑
k=1

(qk−1 + qn−k) = n− 1 +
2

n

n∑
k=1

qk

10



The initial value is clearly q0 = 0. We seek now to solve this recurrence relation by finding a generating
function Q(t) =

∑
n≥0 t

n. Notice that:

∑
n≥0

nqnt
n =

∑
n≥0

n(n− 1)tn + 2
∑
n≥0

(
n−1∑
i=0

qi

)
tn

Notice that the LHS is tQ′(t) and the first term of the RHS is just the Taylor series of 2t2

(1−t)3 . The

second term of the RHS is difficult, but I claim it is equal to 2tQ(t)
1−t . This is because:

tQ(t)

1− t
= (t+ t2 + t3 + . . . )(q0 + q1t+ q2t

2 + . . . ) =
∑
n≥0

n−1∑
i=0

qit
n

Thus we have the following first-order linear differential equation:

Q′(t) =
2t2

t(1− t)3
+

2t

t(1− t)
Q(t)

This is solved by the usual integrating factor method resolving into:

Q(t) =
−2(t+ log(1− t))

(1− t)2

One can verify that the RHS is equal to:

Q(t) = 2

(
t2

2
+
t3

3
+
t4

4
+ . . .

)
(1 + 2t+ 3t2 + . . . )

Thus qn = 2
∑n
i=2

(
1
i

)
(n − i + 1) = 2(n + 1)

∑n
i=1

(
1
i

)
− 4n. But since

∑n
i=1

(
1
i

)
= log(n) + O(1),

whence qn = 2n log(n) +O(n).

3 Special Sequences

Now that we have developed the necessary theory, we will explore some of the special sequences that
pop up in combinatorial applications. In particular, we will discuss the famous Catalan numbers.

3.1 Catalan Numbers and Their Many Forms

Definition 13 (Catalan Numbers). The Catalan number Cn is the number of lattice paths along the
edges of a grid with n× n square cells, with the following requirements:

1. The path starts at the lower left corner and finishes in the upper right corner.

2. The path can only move upwards or rightwards.

3. The path can’t pass above the lower-left-to-upper-right diagonal of the square.

In particular, C0 = 1.

Theorem 28 (Closed-form Catalan). The nth Catalan number is given by the the equation:

Cn =

(
2n

n

)
−
(

2n

n+ 1

)
=

1

n+ 1

(
2n

n

)
Proof. Notice that all paths are enumerated by

(
2n
n

)
. Then notice that any path going over the

diagonal can have the portion of itself after its first crossing over the diagonal reflected to give a
unique path from to the point (n−1, n+ 1); hence there are

(
2n
n+1

)
such paths. The result follows.

11



Lemma 29 (Recurrence Relation for Catalan Numbers). We define C0 = 1. For n ≥ 0,

Cn+1 =

n∑
i=0

CiCn−i

Proof. Given a path P , let i be the last time strictly before the endpoint of P that P touches the
diagonal. There are Ci ways to get to P and Cn−i ways to complete the path, so there are CiCn−i
total paths with final “touchpoint” i. Summing over all possible values of i (namely 0 ≤ i ≤ n) gives
us the desired result.

Theorem 30. The number of ways a sum of n+ 1 terms can be bracketed so that it is calculated just
by adding two terms at a time is Cn. For example, given the 4-term sum a+ b+ c+ d, we can bracket
it in 5 ways:

1. ((a+ b) + c) + d

2. (a+ (b+ c)) + d

3. a+ ((b+ c) + d)

4. a+ (b+ (c+ d))

5. (a+ b) + (c+ d)

Proof. Denote the number of such sums by s(n). It suffices to note that s(0) = 1 and that s satisfies
the above recurrence relation. This is left as an exercise to the reader.

Following are a list of places where the Catalan numbers show up as an enumerating sequence. Proving
the relations is left as an exercise to the reader, but in some cases, hints are given.

Proposition 31. Cn is the number of Dyck words of length 2n, where a Dyck word is a string
consisting of n X’s and n Y’s such that no initial segment of the string has more Y ’s than X’s.

Proof. This is simply another way to imagine the initial definition (X denotes “move right” and Y
denotes “move up”).

Corollary 31.1. Cn counts the number of expressions containing n pairs of parentheses which are
correctly matched.

Corollary 31.2. If one is standing one step from the edge of a cliff, Cn enumerates the number of
sequences of 2n left-or-right steps you can take without falling off the cliff. Thus, if a murderer puts
you one step from the edge of a cliff and hands you a random sequence of 2n left-or-right steps that
you must perform, you have a 1

n+1 chance of survival.

Corollary 31.3. Cn is the number of ways to form a “mountain range” with n upstrokes and n
downstrokes that all stay above a horizontal line, as seen below:

12



Definition 14 (Rooted Binary Tree). A rooted binary tree is an arrangement of nodes and lines
connecting them where there is a distinguished special node (the root) and as one descends from the
root, there are either two lines going down or zero. Internal nodes are those nodes which have two
“children”.

Proposition 32. There are Cn rooted binary trees with n internal nodes.

Proposition 33. Cn is the number of permutations of [n] that avoid sending 1, 2, 3 to i, i + 1, i + 2
(thus avoiding the sequence 123 in the resultant string).

Proposition 34. Cn is the number of ways a regular n + 2-gon can be divided into n triangles if
different orientations are counted separately.

Proposition 35. Cn is the number of ways for 2n people sitting around a circular table to all be
simultaneously shaking hands in such a way that none of the arms cross each other.

3.2 Bell Numbers

Definition 15. The Bell number Bn is the number of partitions of an n-set. For example, B0 =
1, B1 = 1, B2 = 2.

Lemma 36. For n ≥ 1,

Bn =

n∑
k=1

(
n− 1

k − 1

)
Bn−k

Proof. Take X = [n] and consider a partition of X. It has a unique part containing n, say {n} ∪ Y
(where Y is a subset of [n − 1]). If |Y | = k − 1, then there are

(
n−1
k−1
)

choices of Y and Bn−k choices

of a partition of the remaining points, so there are
(
n−1
k−1
)
Bn−k such partitions. We then sum over all

possible values of k (namely 1 to n), and the result follows.

Proposition 37. If a natural number N is the product of n distinct primes, then Bn gives the number
of distinct factorizations of N .

Theorem 38 (The Exponential Generating Function of the Bell Numbers). The exponential gener-
ating function of the Bell numbers is given by the following equation:∑

n≥0

Bnt
n

n!
= ee

t−1

Proof. Let F (t) =
∑
n≥1Bnt

n/n! be the exponential generating function of Bn. Notice that:

d

dt
F (t) =

∑
n≥1

Bnt
n−1

(n− 1)!

By substituting the recurrence relation and simplifying:

d

dt
F (t) =

∑
j≥0

tj

j!

 ·
∑
k≥0

Bkt
k

k!

 = etF (t)

By solving this separable differential equation and plugging in the initial condition that F (0) = 1, we
obvtain the desired result.
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3.3 Stirling Numbers

Definition 16 (Stirling Numbers). Let n and k be positive integers. The Stirling number of the first
kind s(n, k) is defined by the rule that (−1)n−ks(n, k) is the number of permutations of {1, . . . , n}
with k cycles.

The Stirling number of the second kind S(n, k) is the number of partitions of {1, . . . , n} with k
nonempty parts. In particular, if k ≤ 0 or k > 0, both s(n, k) and S(n, k) are 0.

Proposition 39 (Properties of Stirling Numbers). Following are some basic properties of Stirling
numbers:

1.
∑n
k=1(−1)n−ks(n, k) =

∑n
k=1 |s(n, k)| = n!

2.
∑n
k=1 S(n, k) = Bn

3. s(n, n) = S(n, n) = 1

4. s(n+ 1, k) = −ns(n, k) = s(n, k − 1)

5. S(n+ 1, k) = kS(n, k) + S(n, k − 1)

6. Define (t)n := t(t− 1) . . . (tn + 1). Then (t)n =
∑n
k=1 s(n, k)tk and tn =

∑n
k=1 S(n, k)(t)k.

Proof. Trivial (except for 6, which follows by induction) and thus left as exercises for the reader.

Proposition 40.

S(n, k) =
1

k!

k∑
j=1

(−1)k−j
(
k

j

)
jn

Proof. This is 1
k! times the number of surjections [n]→ [k]. Thus it suffices to prove that the number

of such surjections is k!S(n, k). Notice that each partition of [n] with k non-empty parts A1, . . . , Ak
defines a surjection from [n] → [k]: namely the function given by mapping i ∈ Aj to j. However,
under reordering of our k non-empty parts, we can create k! such surjections from each partition,
whence the result follows.

4 Geometry

This section is a brief look at some interesting definitions from “geometric” combinatorics.

4.1 Extremal Set Theory

Definition 17 (Intersecting Families). A family F of subsets of X is intersecting if any A,B ∈ F
have nonempty intersection.

Proposition 41. An intersecting family F of subsets of [n] satisfies |F| ≤ 2n−1. This is the best
possible bound, as it is realized for all n.

Proof. The 2n subsets of [n] can be partitioned into 2n−1 pair of the form {A, [n] \A}. Clearly, only
one set can be taken from each pair, whence the inequality follows. The bound is realized precisely
when one set is taken from each pair.

Definition 18 (Sperner Families). A family F of sets is called a Sperner family if no member of F
properly contains any other.

Proposition 42. Let F be a sperner family of subsets of the n-element set X = {1, . . . , n}. Then
|F| ≤

(
n
bn/2c

)
. If equality holds, then F consists of all subsets of X of size bn/2c or all subsets of size

dn/2e.
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Proof. Consider a chain of subsets ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = X. Notice that there is a bijective
correspondence between chains (of this length) and permutations, given by:

π 7→ ∅ = {} ⊂ {π(1)} ⊂ {π(1), π(2)} ⊂ · · · ⊂ {π(1), . . . , π(n)} = X

Thus there are n! chains, each with a 1/
(
n
k

)
chance to contain a subset A (with |A| = k). By

assumption, any chain contains at most one member of F , so:∑
A∈F
|A|!(n− |A|!) = n!

(∑
A∈F

1(
n
|A|
))

But since there are only n! chains, we see that:∑
A∈F

1(
n
|A|
) ≤ 1

The middle binomial coefficients are the largest, so if m = bn/2c, we see that
∑
A∈F

1

(n
m)
≤ 1 whence

|F| ≤
(
n
m

)
, as desired. Furthermore, this bound is only met when all the sets are of size m or

n−m = dn/2e. We are done if n is even: if not, then we must prove that either all of the sets in F
have size m or all of them have size m+ 1. To do this, note that every chain must contain precisely
one element of F to meet the bound, and then consider the sequence:

A0 ⊂ B0 ⊃ A1 ⊂ . . .

where the Ai are all the sets of size m and the Bi are all the sets of size m + 1. Now notice that if
there is one A0 in F , then B0 cannot be in there, hence A1 is, hence B1 is not, etc. Similarly, if there
is one B0 ∈ F , A0 cannot be in there, A1 cannot be in there, but B1 must be, etc. Thus the result
follows.

Theorem 43 (The de Bruijin-Erdös Theorem). Let F be a family of subsets of the set X = {1, . . . , n}
and suppose that any two sets of F have exactly one point in common. Then |F| ≤ n with equality
only when one of the following situations occurs:

1. Up to renumeration, we have F = {A1, . . . , An} where Ai = {i, n} for i = 1, . . . , n.

2. Up to renumeration, we have F = {A1, . . . , An} where An = {1, 2 . . . , n− 1} are Ai = {i, n} for
1 ≤ i ≤ n− 1.

3. For some positive integer q, we have n = q2 + q+ 1, each set in F has size q+ 1, and each point
lies in q + 1 members of F .

We will not offer a proof here, but encourage you to research it on your own.

4.2 Packings, Coverings, and Steiner Triple Systems

Consider the following problem:

Problem 1. Given integers l,m, n with l < m < n, what is the greatest number of m-element subsets
of an n-element set with the property that any l-element subset lies in at most one of the chosen sets?

Proposition 44. Let B be a family of m-subsets of an n-set such that any l-set lies in at most one
member of B. Then |B| ≤

(
n
l

)
/
(
m
l

)
with equality if and only if any l-subset lies in exactly one member

of B.

Proof. Count pairs of l-sets and elements in B, (L,B). There are
(
m
l

)
subsets of size l in each B, so

there are |B| ·
(
m
l

)
such pairs. On the other hand, there are

(
n
l

)
subsets of size l, each in at most one

B ∈ B, so the number of such pairs is bounded above by
(
n
l

)
, with equality if every l-set lies in a

unique member of B, whence the result follows.

15



Definition 19. A pair (X,B) whereX is an n set and B a family ofm-subsets satisfying the hypotheses
of the proposition and attaining the bound is called a Steiner system S(l,m, n).

Problem 2. For which values of l,m, n does a Steiner system S(l,m, n) exist?

Definition 20. A Steiner system S(2, 3, n) is called a Steiner triple system (with order n) and denoted
STS(n). Explicitly, it is a set X of points and a set B of 3-element subsets of X such that any two
points of X lie in a unique triple.

Theorem 45. If there exists a Steiner triple system of order n, then n = 0 or n ≡ 1, 3 mod 6.

Proof. Suppose that (X,B) is an STS of order n > 0. We claim the following results:

Lemma 46. Any point lies in (n− 1)/2 triples.

This follows from noticing that there are n− 1 two-element subsets containing a point x and that the
fact that any 3-subset containing x contains two such subsets, so n−1

2 subsets contain x.

Lemma 47. There are n(n− 1)/6 triples.

This follows from noticing that there are n(n − 1)/2 pairs (x,B) (where x is a point and B a triple
containing x). But then there are three choices of x for each B, so there are n(n− 1)/6 triples in all.

This immediately demonstrates the result: both (n − 1)/2 and n(n − 1)/6 must be integers, which
implies that n is 1, 3 mod 6, as desired.

Theorem 48. If n ≡ 3 mod 6, then there exists a Steiner triple system of order n.

Proof. Suppose that n ≡ 3 mod 6, so n = 3m where m is an odd positive integer. Then let X =
{ai, bi, ci | i ∈ Z/(m)} and let the blocks come in the following two types:

1. Triples of the form aiajbk, bibjck or cicjak where i, j, k ∈ Z/(m), i 6= j and i+ j = 2k in Z/(m).

2. Triples of the form aibici for i ∈ Z/(m)

One can verify that this gives a Steiner triple system by checking that any pair of points lies in a
unique triple of the above form.

Theorem 49. If n ≡ 1 mod 6, then there exists a Steiner triple system of order n.

The proof is not offered here, but we encourage you to research the various ways of constructing such
a Steiner triple system.

Definition 21 (Packings and Coverings). Let X be a set with n elements. A (2, 3)-packing is a set
B of triples such that any two points of X are contained in at most one member of B, and a (2, 3)-
covering is a set B are contained in at least one member of B. The size of the largest (2, 3)-packing
is denoted p(n) and the size of the smallest (2, 3)-covering is denoted c(n).

Proposition 50. For all n, p(n) ≤ n(n− 1)/6 and c(n) ≥ n(n− 1)/6, with equality in either bound
if and only if there exists a STS of order n.

4.3 Finite Geometry

Definition 22 (Gaussian Coefficients). The Gaussian coefficient
[
n
k

]
q

is defined to be the number of

k-dimensional subspaces of V (n, q) (the vector space of dimension n over over the finite field of size
q).

Theorem 51 (Formula for the Gaussian Coefficient).[
n

k

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
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Proof. First notice that the number of linearly independent k-tuples in an n-dimensional space is
(qn − 1)(qn − q) · · · (qn − qk−1). A k-dimensional subspace is spanned by k-linearly independent vec-
tors, which we have counted: but a given subspace will have many different bases.

However, each subspace will have exactly as many bases as the number of linearly independent k-
tuples in a k-dimensional space, so we can just use our earlier formula substituting k for n. Dividing
the two gets the number of k-dimensional subspaces and our desired formula.

Proposition 52. [
n

k

]
q

=

[
n

n− k

]
q

(1)

4.4 Projective Geometry

Definition 23 (Projective Plane). The real projective plane P2(R) is the set of lines through the
origin (1-dimensional subspaces) of 3-dimensional space R3.

Notice that by choosing a plane Π not through the origin, we can identify each line with a point on Π
(namely the point it passes through) except all lines that are parallel to Π (which become “points at
infinity”). Also notice that a line in the projective plane Π is swept out by a 2-dimensional subspace
in R3, and the entire plane is swept out by the entire 3-dimensional space of R3.

Definition 24 (n-dimensional Projective Space). The n-dimensional projective space over a field F ,
denoted Pn(F ) is composed of a (n+1)-dimensional vector space V over F , where the points of Pn(F )
are the 1-dimensional subspaces of V , the lines are the 2-dimensional subspaces, the planes are the
3-dimensional subspaces, and so on.

Definition 25 (k-flat). We use the term k-flat for an object in projective geometry represented by a
(k + 1)-dimensional vector subspace. For example, a line in projective geometry is a 1-flat.

Proposition 53 (Properties of Projective Space). Following are some elementary properties of pro-
jective space and brief proofs of them using linear algebra.

1. Two points lie in a unique line (since two points are 1-dimensional subspaces and their span is
2-dimensional).

2. Two intersecting lines lie in a unique plane (since the lines are 2-dimensional with a 1-dimensional
intersection, so their span is 3-dimensional).

3. Two coplanar lines intersect (two 2-dimensional subspaces with a 3-dimensional span must in-
tersect 1-dimensionally).

Proposition 54. Pn(Fq) has
[
n+1
1

]
q

= (qn+1− 1)/(q− 1) points. It has
(
n+1
k+1

)
q
k-flats, each of which

contains (qk+1 − 1)/(q − 1) points.

An interesting “reverse characterization” was given by Veblen and Young, demonstrating why we
would care about projective geometry in combinatorics:

Theorem 55 (Veblen-Young Theorem). Let L be a family of subsets (called lines) of the set X.
Suppose that the following conditions hold:

1. Every line contains at least three points,

2. Two points of X lie in a unique line,

3. There exist two disjoint lines,

4. If a line meets two sides of a triangle, not at their intersection, then it meets the third side also.
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Then X and L can be identified with the points and lines of the projective space Pn(Fq) for some prime
power q and n ≥ 3.

Definition 26 (Projective Planes). A projective plane of order q consists of a set X of q2 + q + 1
elements called points, and a set B of (q + 1)-element subsets of B called lines having the property
that any two points lie on a unique line.

Proposition 56 (Properties of Projective Planes). Following are some basic properties of a projective
plane with order q:

1. any point lies on q + 1 lines,

2. two lines meet in a unique point,

3. and there are q2 + q + 1 lines.

Theorem 57 (Duality Principle). Let (X,B) be a projective plane of order q. Further let X ′ = B
and B′ = {βx | x ∈ X}, where βx = {L ∈ B | x ∈ L}. Then (X ′,B′) is also a projective plane of order
q, swapping the lines and points of the original plane.

Definition 27 (Affine Planes). An affine plane of order q consists of a set X of q2 points and a set
B of q-element subsets of X called lines such that two points lie on a unique line. We call two lines in
an affine plane parallel if they are equal or disjoint.

Proposition 58 (Properties of Affine Planes). Following are some basic properties of a affine plane
with order q:

1. Any point lies on q + 1 lines.

2. There are q(q + 1) lines.

3. If p is a point and L a line, there is a unique line L′ through p parallel to L.

4. Parallelism is an equivalence relation. Furthermore, parallel class contains q lines which partition
the point set.

Theorem 59. A projective plane of order q exists if and only if an affine plane of order q exists.

Proof. Removing a line (and all its points) from a projective plane creates an affine plane. Conversely,
let X be the set of points in an affine plane and Y be the set of parallel classes of lines in said affine
plane. Then if we add each element in Y to X, let Y be a new line, and replace each line L with a
new line L∗ = L∪ {C} (where C is the parallel class containing L), then the result can be seen to be
a projective plane.

In this case, we call the line Y the line at infinity, for obvious reasons.

4.5 Lattices

Definition 28 (Lattices). A lattice is a set X with two binary operations ∧ (called the greatest lower
bound) and ∨ (called the least upper bound) defined on X, as well as two distinguished elements 0
and 1 that satisfy the following axioms:

1. x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z (associativity)

2. x ∧ y = y ∧ x and x ∨ y = y ∨ x (commutativity)

3. x∧ x = x∨ x = x, x∧ (x∨ y) = x = x∨ (x∧ y), and x∧ 0 = 0 and x∨ 1 = 1 (idempotent laws)

Proposition 60. An equivalent definition for a lattice is that it is a poset X with a unique minimal
element 0 and a unique maximal element 1 such that any pair of elements in X have a greatest lower
bound and least upper bound.
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Proof. Trivial, left as an exercise for the reader.

Definition 29. A lattice L is distributive if it satisfies the two distributive laws:

1. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Recall, as we discussed in set theory, that a subset Y of a set X is said to be closed downward or
a down-set if y ∈ Y, z ≤ y ⇒ z ∈ Y . Notice that the union or intersection of two down-sets is a
down-set.

Definition 30. The set of all down-sets of a poset P with the operations of union and intersection,
is a distributive lattice with 0 = ∅ and 1 = P , denoted L(P ).

Theorem 61. Let L be a finite distributive lattice. Then there is a finite poset P (uniquely determined
by L) such that L is isomorphic to L(P ).

5 A Hint of Algebraic Combinatorics

The most basic link between algebra and combinatorics is given by Cayley’s Theorem:

Definition 31. A permutation group on a set X is a subgroup of the symmetric group SX of all
permutations of X. Every permutation group can be viewed as the set of automorphisms of some
structure on X.

Theorem 62 (Cayley’s Theorem). Any group G is isomorphic to a permutation group.

Proof. Let X be the underlying set of G. Then each element g in G acts as a permutation on X by
taking x to xg (where xg is defined as x, g ∈ G). In particular, this induces an injective homomorphism
φ : G→ SX given by g 7→ (x 7→ gx), whence G ∼= imφ ≤ SX . We call imφ the standard permutation
representation of G.

5.1 Group Actions

Definition 32 (Group Actions). The action of a group G on a set X is a homomorphism φ : G→ SX .
Given such a homomorphism, we say that G acts on X. We abbreviate φ(g)(x) by g · x.

Definition 33 (Orbits). Suppose G is a group acting on X. Then define an equivalence relation ≡
on X by the rule x ≡ y if and only if xg = y for some g ∈ G. The equivalence classes of this relation
are called the orbits of the group G. The orbit containing an element x is denoted G · x. If there is
only one orbit, the action of G is called transitive.

Definition 34 (Coset Space). The coset space (G : H) is the set of right cosets of H in G. The coset
action of G on (G : H) is the natural one, given by the rule (Hk)g = H(kg).

Proposition 63. Any transitive action of G is equivalent to a coset action.

Proof. Let G act transitively on the set X. Choose an arbitrary point x ∈ X and let H = {g ∈ G |
xg = x} be the stabilizer of x, Gx. Then H is a subgroup of G and there is a natural bijection between
X and (G : H), namely:

For each y ∈ X let S(y) = {g ∈ G | xg = y}. In particular, this is equal to Hy.

This defines an equivalence of the actions of G, as if yg = z, S(y)g = S(z).

Proposition 64. Two coset actions on (G : H) and G : K) are equivalent if and only if the subgroups
H and K are conjugate.
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Theorem 65. The number of inequivalent actions of the symmetric group S3 on {1, . . . , n} is the
same as the number of ways to express n as the sum of ones, twos, threes, and sixes.

Proof. We will first consider the transitive actions. To do this, notice that up to conjugation, there
are unique subgroups of order 1, 2, 3, 6 in S3 (and these are all subgroups of S3). Thus, there is a
unique transitive action on a set of size 1, 2, 3, or 6.

Since an arbitrary action is made up of a disjoint union of these, the number fn of different actions on
{1, . . . , n} is equal to the number of ways of expressing n as a sum of ones, twos, threes, and sixes.

5.2 Burnside’s Lemma

Definition 35 (Stabilizer). For any group G acting on a finite set X, the stabilizer of x (denoted
Gx) is the set of elements in G fixing x, that is

Gx = {g ∈ G | g · x = x}.

Proposition 66. For any group G acting on a finite set X, Gx is a subgroup of G for any x ∈ X.

Theorem 67 (Orbit-Stabilizer Theorem). Let G be a group which acts on a finite set X. Then, for
any x ∈ X, the size of the orbit G · x of x is equal to the index of the stabilizer Gx.

|G · x| = [G : Gx]

Proof. Notice that g, h ∈ G satisfy g ·x = h ·x if and only if gh−1 ∈ Gx. Therefore, g ·x = h ·x if and
only if g and h are in the same left coset of Gx. Now, notice that each y ∈ G · x corresponds to the
set of elements g′ ∈ G with g′ · x = y. Also, our above work shows that each of these sets correspond
to a unique left coset of Gx. Therefore, each y ∈ G · x corresponds to a unique coset of Gx.

Theorem 68 (Burnside’s Lemma). Let G be a finite permutation group on a set X. For each element
g ∈ G, we let Xg denote the set of elements in X fixed by g. Furthermore, we let X/G denote the set
of orbits of G. Then,

|X/G| = 1

|G|
∑
g∈G
|Xg|

Proof. Notice that
∑
g∈G |Xg| = |{(x, g) ∈ X×G | g·x = x} =

∑
x∈X |Gx|. We use the orbit-stabilizer

theorem to show that |G|
|G·x| = |Gx|, whence our sum becomes:

∑
g∈G
|Xg| = |G|

∑
x∈X

1

|G · x|

But notice that the sum
∑
x∈X

1
|G·x| is precisely the number of orbits of G, so indeed it is equal to

|X/G|. Substituting this in and dividing both sides by G, we find the desired result:

1

|G|
∑
g∈G
|Xg| = |X/G|

Theorem 69. There are r6+3r4+12r3+8r2

24 ways to color a cube with r colors if two colored cubes which
differ by a rotation are considered identical.

Proof. The symmetry group of rotations of the cube, C, is isomorphic to S4. Its elements can be
described by the following table:
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Type Axis Order of Rotation No. of elements
1 None 1 1
2 Face 2 3
3 Face 4 6
4 Edge 2 6
5 Vertex 3 8

For any g ∈ C, a coloring x ∈ X is fixed by g if and only if all faces in the same cycle of g have the
same color. Thus, if c(g) is the number of cycles of an element g, the number of fixed colorings is
rc(g). We use this to create the next table:

Type c(g) |Xg| No. of elements Part of Sum
1 6 r6 1 r6

2 4 r4 3 3r4

3 3 r3 6 6r3

4 3 r3 6 6r3

5 2 r2 8 8r2

Thus, by summing everything and dividing by 24 (the order of C), we get the desired polynomial
r6+3r4+12r3+8r2

24 .

5.3 Cycle Indices

Definition 36 (Cycle Index). Suppose we have an element g of a permutation group G acting on a
set X with |X| = n. Further suppose the cycle decomposition of g has c1 cycles of length 1 (fixed
elements), c2 cycles of length 2, and so on. Then the cycle index of g is the monomial:

z(g; s1, . . . , sn) = sc11 s
c2
2 . . . scnn

Furthermore, the cycle index of the group G is the average of the cycle indices on its elements:

Z(G; s1, . . . , sn) =
1

|G|
∑
g∈G

n∏
i=1

s
ci(g)
i

Now take a collection of ‘figures’ Φ = {φ1, φ2, . . . } with a natural number ‘weight’ function w(φi) such
that there are only finitely many figures of any given weight. This gives us a figure-counting series

a(t) =
∑
n≥0

ant
n

where an is the number of φi with w(φi) = n. Next, we are given a permutation group G on X and
we want to count the number of ways of associating a figure with each point of X in such a way that
two configurations are identical if some element of G takes one to the other. For example, we could
have the object being acted on being X and the figures being colors.

Precisely, an attachment of figures to points of X is a function f : X → Φ, with a total weight
w(f) =

∑
x∈X w(f(x)). Now G acts on the set of functions by the rule (fg)(x) = f(xg−1). We

want to count the orbits of G on functions, which we do by means of the function-counting series
b(t) =

∑
n≥0 bnt

n where bn is the number of orbits of G on functions of total weight n (as the action
of G doesn’t change the weights of the functions).

Theorem 70 (Cycle Index Theorem).

b(t) = Z(G; a(t), a(t2), . . . , a(tn))
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Lemma 71. The cycle index of S4 is 1
24 (s61 + 3s21s

2
2 + 6s21s4 + 6s32 + 8s23).

Lemma 72. The cycle index of Cn is 1
n

∑
d|n φ(d)s

n/d
d .

Theorem 73. Thus there are Nk = 1
n

∑
d|n φ(d)kn/d necklaces of length n with k types of gems if

two necklaces that can be rotated into each other are considered equivalent.

6 Extras

6.1 Roots of Unity Filter

There is an extremely interesting problem-solving application called the roots of unity filter. We can
use it (and the Binomial Theorem) to find the numbers of subsets whose size satisfies a certain size
requirement. We saw a brief hint of this in the section on subsets of even and odd size, but we will
further explore it here.

Proposition 74. If n is a multiple of 8, then the number of sets of size divisible by 4 is 2n−2+2(n−2)/2.

Proof. Let A be the desired number and B be the number of sets whose size is congruent to 2 mod 4.
Notice that A+B is the number of all sets of even size, so A+B = 2n−1.

Now substitute t = i in the Binomial Theorem:

(1 + i)n = (
√

2eiπ4)n = 2n/2 =

n∑
k=0

(
n

k

)
ik

By taking the real part of the right-hand side, we obtain that A−B = 2n/2. This demonstrates that
A = 2n−2 + 2(n−2)/2 and B = 2n−2 − 2(n−2)/2. Also, by noting that the imaginary part of the above
sum is 0, we see that the number of subsets of size congruent to 1 mod 4 is equal to the number of
subsets of size congruent to 3 mod 4 is equal to 2n−2.

Theorem 75 (The Roots of Unity Filter). If ζ is a primitive kth root of unity and p(x) is a polynomial
of the form anx

n + an−1 + . . . a1x+ a0 (where n is a multiple of k), then:

p(1) + p(ζ) + · · ·+ p(ζn−1)

k
= a0 + ak + a2k + · · ·+ an

Consider the following practice problems:

Problem 3. The above theorem filters 0 mod k. Thus, consider how one can generalize our result to
filter a mod k.

Problem 4. Use the roots of unity filter to come up with other estimates of the number of subsets
of size congruent to 0 mod k for various k given that the whole set has size congruent to 0 mod 2k.

6.2 Stirling’s Formula

Theorem 76 (A Weaker Estimate for n!). As n → ∞, log(n!) ∼ n log(n) (that is, their ratio
approaches 1).

Proof. Clearly log(n!) < n log(n) = log(nn). Then consider the power series expansion of en,
∑
k≥0

nk

k! .
Comparing en to the nth term in said series shows that en > nn/n!, whence n! > nn/en. Thus
log(n!) > n log(n)− n, so we have the inequality:

n log(n)− n < log(n!) < n log(n)

From here, a fairly obvious application of the squeeze theorem derives the desired result.

22



Theorem 77 (Stirling’s Formula).

n! ∼
√

2πn
(n
e

)n
Proof. The full proof takes some pages, and is documented here.

6.3 Error-Correcting Codes

Definition 37 (Hamming Space). Hamming Space H(n, q) is the set of all words of length n over the
fixed alphabet Q of size q. We give H(n, q) a metric, called Hamming distance between words v, w to
be the smallest number of errors which could change v and w (that is, d(v, w) = |{i | vi 6= wi}|).

Proposition 78. H(n, q) is a metric space under Hamming distance: that is, d(v, w) ≥ 0 with equality
if and only if v = w, d(v, w) = d(w, v), and d(u, v) + d(v, w) ≥ d(u,w).

Definition 38 (Codes). A code of length n over the alphabet Q is just a subset C of Hamming space
H(n, q) which contains at least two words. The elements of the code are called codewords.

Our idea is to perform error correction by restricting our transmissions to be members of the code C,
rather than arbitrary words. If the members of C are sufficiently distinguishable, then, given just a
few errors, we can recover the transmitted word.

Definition 39 (Nearest-Neighbor Decoding). Nearest-neighbor decoding is done as so: if the word
w ∈ H(n, q) is received, we find the codeword c ∈ C for which d(w, c) is as small as possible. We
assume that the transmitted word was c.

Definition 40 (Error-Correcting). For a positive integer e, we say that the code C is e-error-correcting
if, given any word w, there is at most one codeword c such that d(w, c) ≤ e. In other words, the code
C ⊆ H(n.q) is e-error-correcting if and only if the balls of radius e with centres at the codewords are
pairwise disjoint.

Proposition 79. A code with minimum distance d (that is the smallest distance between two distinct
codewords) is e-error-correcting if and if only d ≥ 2e+ 1.

Proof. Trivial, left as an exercise for the reader.

Definition 41 (Binary Symmetric Channel). A binary symmetric channel is a channel using only
the binary alphabet F2 = {0, 1}, with the following conditions:

1. For each digit, there is a probability p < 1
2 that said digit is swapped to the other value.

2. This probability is equal for all digits and independent of the swapping of any other digits.

Definition 42 (Rate of a Code). The rate of a code C of length n over an alphabet of size q is
defined by be logq(|C|)/n. This is because if |C| = qk for some k, then k-tuples of information become
n-tuples, so information is sent k/n times as fast as it would be otherwise.

Theorem 80 (Shannon’s Theorem). Suppose we have a binary symmetric channel with error proba-
bility p for a single digit. Then:

1. If R < 1 + p log2 p+ (1− p) log2(1− p) and ε > 0, there is a code with rate at least R such that
the probability of error decoding a codeword by nearest-neighbour decoding is less than ε.

2. This is the best possible bound for R. Specifically, if R is larger than the bound, there is some
ε > 0 such that we can’t find a code with rate at least R with failure rate less than ε.

The proof is not offered here, but we encourage you to research it on your own.
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