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Introduction

These notes, compiled from Hartshorne’s Algebraic Geometry, Vakil’s Foundations of Algebraic Geometry,
and Brian Conrad’s course notes from the quarter in which I took Math 216A (transcribed by Vaughan
McDonald), are my attempt to organize my own knowledge about algebraic geometry and breath some life
into it. I also received help from my friend Sándor Kovács in building geometric intuition. His advice,
to work towards being “at a level when you don’t even need to translate [between algebra and geometry],
because the algebraic and geometric sides live in your brain simultaneously”, has shaped my journey into
algebraic geometry. These are by far my most ambitious and important notes yet, so I hope you enjoy what
you find. As always, let me know at truax [at] stanford [dot] edu if you find any mistakes.

The prerequisites for these notes are: ring theory, field theory, commutative algebra (though important
results are proven in the appendix or in my notes on the subject available here), topology (again, important
results are proven in the appendix), and mathematical maturity (for example, experience with manifolds
may be helpful for intuition about schemes).

Note: All rings are commutative with identity unless otherwise stated.

1 Varieties

Varieties form the basis of classical algebraic geometry, and are useful for building intuition. However, beware
of bringing any geometric intuition from this section into other sections without checking it rigorously:
varieties are substantially “nicer” than schemes (we will explore the sense in which varieties are literally
“nice” schemes in a later section).

1.1 The Zariski Topology

Definition 1.1 (Affine n-Space). Let k be a field. Affine n-space over k, denoted Ank , is the set of all
n-tuples of elements of k; that is, affine n-space over k is the underlying set of the vector space kn.

Now, let A = k[x1, . . . , xn] be the polynomial ring in n variables over k. Any element f ∈ A can be
interpreted as a function Ank → k by sending (a1, . . . , an) to f(a1, . . . , an) (that is, by sending a point to the
element of k given by replacing each variable of f with the respective coordinate of the point).

Definition 1.2 (Zero Set). Suppose f ∈ A is a polynomial. Then Z(f) = {P | Ank | f(P ) = 0} is called the
zero set of f . More generally, if S ⊆ A is a collection of polynomials, the zero set of S is the collection of
points at which every polynomial in S vanishes; that is, Z(S) = {P | Ank | f(P ) = 0 for all f ∈ S}.

Definition 1.3 (Algebraic Set). A subset Y of Ank is an (affine) algebraic set if there exists a subset S ⊆ A
such that Y = Z(S).

Proposition 1.4 (Properties of Algebraic Sets). The union of any finite collection of algebraic sets is an
algebraic set. The intersection of any family of algebraic sets is an algebraic set. The empty set and the
whole space are algebraic sets.

Proof. Suppose that S1, S2 ⊆ A, Y1 = Z(S1), and Y2 = Z(S2). Then one may easily verify Y1∪Y2 = Z(S1S2),
where S1S2 denotes the set of all products of an element of S1 by an element of S2. Hence Y1 ∪ Y2 is an
algebraic set, so by induction the union of any finite collection of algebraic sets is an algebraic set. On
the other hand, given any family {Sλ}λ∈Λ of subsets of A and their respective algebraic sets Yλ = Z(Sλ),⋂
λ Yλ = Z(

⋃
λ Sλ), so the former is an algebraic set. Finally, ∅ = Z(1) and Ank = Z(0).

Definition 1.5 (Zariski Topology). The Zariski topology on Ank is the topology given by defining the algebraic
sets to be the closed sets. This defines a valid topology by Proposition 1.4.

The following proposition shows that it suffices to consider the zero sets of ideals, rather than arbitrary
subsets of A.
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Proposition 1.6 (Zero Sets of Ideals). Suppose that S is a subset of A, and ⟨S⟩ ◁ A is the ideal of A
generated by S. Then V (S) = V (⟨S⟩).

Note 1.7. By Hilbert’s Basis Theorem, A is Noetherian. Hence any ideal of A can be generated by finitely
many elements. In light of the above proposition, this means that any infinite set S of polynomials in n
variables over a field k has a corresponding finite set of polynomials (namely any finite set of generators for
⟨S⟩) which vanishes in exactly the same places.

Example 1.8 (The Zariski Topology on A1
k). In this case, the corresponding ring A = k[x] is a Euclidean

domain, hence a principal ideal domain. Therefore, every algebraic set is the set of zeroes of a single
polynomial. Now, any finite set appears as the set of zeroes of a single polynomial, and any nonzero
polynomial has a finite set of zeroes. Therefore, the closed sets in A1

k are all collections of finitely many
points (including the empty set, of course), and the entire space.

Definition 1.9 (The Ideal of a Set). Given a set Y ⊆ Ank , the ideal of Y in A is I(Y ) = {f ∈ A | f(P ) =
0 for all P ∈ Y }. It is easy to verify that I(Y ) is an ideal, since the sum of any two polynomials vanishing
on Y vanishes on Y , and the product of any polynomial with a polynomial vanishing on Y vanishes on Y .

Example 1.10 (Ideals with Equal Algebraic Sets). A reasonable question to ask is if there is a two-way
correspondence between ideals and algebraic sets. Certainly, given two different algebraic sets, their ideals
will be different (exercise: prove this fact). However, unfortunately, there are different ideals which give
the same algebraic set. Consider, for example, (x) and (x2) in k[x]. These ideals are not equal, yet both
correspond to the point (0) ∈ A1

k. You may complain that this example is cheating: after all, the algebraic
set of (f) and (fn) are equal for any polynomial f and positive integer n. Is there a “less trivial” example,
you ask? Indeed, there is not; this is the thrust of Hilbert’s Nullstellensatz, which we discuss later.

Proposition 1.11 (More Properties of Algebraic Sets). Let k be a field and A = k[x1, . . . , xn].

(1) If T1 ⊆ T2 are subsets of A, then Z(T1) ⊇ T2.

(2) Conversely, if Y1 ⊆ Y2 are subsets of Ank , then I(Y1) ⊇ I(Y2).

(3) If Y1, Y2 ⊆ Ank , then I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

(4) For any subset Y ⊆ Ank , Z(I(Y )) = Y , the closure of Y .

Finally, we have arrived at the first truly nontrivial fact about varieties, known as Hilbert’s Nullstellensatz.

Theorem 1.12 (Hilbert’s Nullstellensatz). For any ideal a ◁ A, I(Z(a)) =
√
a, the radical of a.

Proof. See Appendix A.2 or my notes on commutative algebra.

1.2 Affine Varieties

For the rest of this chapter, let k be an algebraically closed field.

Definition 1.13 (Irreducible Subset). A nonempty topological space X is called irreducible if it cannot
be expressed as the union Y1 ∪ Y2 of two proper closed subsets Y1, Y2 ⊆ X. A nonempty subset Y of a
topological space X is called irreducible if Y is irreducible when given the subspace topology.

If you have not encountered this definition before (which is understandable, as it does not often appear
in the study of “nice” topological spaces), see Appendix B, Results from Topology, for useful facts about
irreducible subsets/spaces (in particular equivalent conditions for irreducibility).

Definition 1.14 (Affine and Quasiaffine Varieties). An (affine algebraic) variety is an irreducible closed
subset of Ank ; that is, an irreducible algebraic set. An open subset of an affine variety is a quasi-affine variety.

Theorem 1.15 (Algebro-Geometric Correspondence). Suppose that k is an algebraically closed field. Then
there is an inclusion-reversing correspondence between types of closed subsets of Ank and types of ideals of
A = k[x1, . . . , xn], given by the operations Z and I, as follows:
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1. Radical ideals of A correspond to closed subsets of Ank .

2. Prime ideals of A correspond to irreducible closed subsets of Ank .

3. Maximal ideals of A correspond to single points of Ank .

Proof. The fact that radical ideals of A correspond to closed subsets of Ank follows immediately from Theo-
rem 1.12 and Proposition 1.11. Now, recall that prime ideals are radical; hence for (ii) suffices to show that
a radical ideal of A is prime if and only if its corresponding closed subset of Ank is irreducible.

Let p ◁ A be prime, and suppose that Z(p) = Y1 ∪ Y2. Then p = I(Y1) ∩ I(Y2), so either p = I(Y1)
or p = I(Y2). But then either Y1 = Z(p) or Y2 = Z(p), so Z(p) is indeed irreducible. On the other
hand, suppose that Y is irreducible, and take fg ∈ I(Y ). Then Y ⊆ Z(fg) = Z(f) ∪ Z(g), and indeed
Y = (Y ∩Z(f))∪ (Y ∩Z(g)) is an expression of Y as the union of two closed subsets of Y . Therefore either
Y ∩ Z(f) = Y (in which case Y ⊆ Z(f) and f ∈ I(Y )) or Y ∩ Z(g) = Y (in which case Y ⊆ Z(g) and
g ∈ I(Y )). Hence if fg ∈ I(Y ) then either f ∈ I(Y ) or g ∈ I(Y ), so I(Y ) is prime, as desired.

Finally, to prove (iii), it suffices to recognize that the correspondence given by I and Z is inclusion-reversing
(see Proposition 1.11), so maximal ideals of A correspond to minimal (nonempty) closed sets of Ank . Yet any
point of Ank is closed (for example, the point (a1, . . . , an) is the zero set of the collection {x1−a1, . . . , xn−an})
and is clearly minimal. Hence the result follows.

Corollary 1.15.1 (Maximal Ideals in A). Any maximal ideal of A = k[x1, . . . , xn] has the form (x1 −
a1, . . . , xn − an) for a1, . . . , an ∈ k.

Proof. Recall from the above theorem that any maximal ideal of A is the ideal corresponding to a point
(a1, . . . , an) ∈ Ank . Yet the ideal corresponding to this point is (x1 − a1, . . . , xn − an).

Corollary 1.15.2. Ank is irreducible.

Proof. This follows immediately from Ank = Z(0), since 0 is prime in k[x1, . . . , xn].

Definition 1.16 (Coordinate Ring). Let Y be an affine algebraic set in Akn. Then the coordinate ring of Y ,
denoted A(Y ) is k[x1, . . . , xn]/I(Y ). When Y is a variety, A(Y ) is a domain.

The coordinate ring can be considered as the ring of polynomial functions on Y . To see why, notice that the
polynomials f and g are equal in A(Y ) if and only if f and g differ by a polynomial which vanishes on Y ; that
is, if and only if f and g give the same outputs on each point of Y . For example, A(∅) is the zero ring (since
there is just one function and hence one polynomial function on the empty set), and A(Akn) = k[x1, . . . , xn].

Definition 1.17 (Noetherian Topological Space). A topological space X is called Noetherian if it satisfies
the descending chain condition for closed subsets: for any descending chain Y1 ⊇ Y2 ⊇ · · · of closed subsets,
there is an integer r such that Yr = Yr+1 = · · · (that is, the chain stabilizes).

Proposition 1.18 (Affine n-Space is Noetherian). Ank (with the Zariski toplogy) is Noetherian.

Proof. A descending chain of closed sets in Akn corresponds to an ascending chain of (radical) ideals in
k[x1, . . . , xn]. Since k[x1, . . . , xn] is Noetherian, the ascending chain of ideals stabilizes, so the descending
chain of closed sets stabilizes.

Lemma 1.19 (Irreducible Sets in Unions). If an irreducible set Z is in the union X1 ∪ · · · ∪ Xr of some
irreducible closed sets X1, . . . , Xr, then Z ⊆ Xj for some j.

Proof. In this case, Xi ∩ Z is a closed set for each i. In particular, Z = (X1 ∩ Z) ∪ · · · ∪ (Xr ∩ Z), so since
Z is irreducible, Z = Xi ∩ Z for some i, implying that Z ⊆ Xi, as desired.

Proposition 1.20 (Unique Decomposition in Noetherian Spaces). In a Noetherian topological space X,
every nonempty closed subset Y can be expressed as a finite union Y = Y1 ∪ · · · ∪ Yr of irreducible closed
subsets Yi. If we require that Yi ̸⊇ Yj for i ̸= j, then the Yi are uniquely determined. They are called the
irreducible components of Y .
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Proof. Let S be the set of subsets of X that cannot be written as the union of irreducible subsets. If S = ∅,
we are done, so assume it is nonempty. Since X is Noetherian, S has a minimal element Y ∈ S . Yet Y
cannot be irreducible (else it is the union of irreducible subsets), so we can write Y ′ ∪ Y ′′ = Y . By the
minimality of Y , both Y ′ and Y ′′ are not in S , so they can be written as the union of irreducible subsets.
Yet then Y is the union of these two unions, a contradiction.

Now assume the extra condition and suppose there are two such decompositions Y = Y1 ∪ · · · ∪ Yr =
Y ′
1′ ∪ · · · ∪Y ′

r′ . Then, for any i, Yi ∈ Y ′
1′ ∪ · · · ∪Y ′

r′ , so by the above Lemma, Yi ⊆ Y ′
j for some j. By identical

logic, Y ′
j ⊆ Yk for some k. Thus Yi ⊆ Y ′

j ⊆ Yk, so by the extra condition Yi = Y ′
j = Yk. By repeating this

argument, we see that the irreducible sets in the first decomposition are identical, up to some permutation,
to the irreducible sets in the second decomposition.

Corollary 1.20.1 (Unique Decomposition of Algebraic Sets). Every algebraic set in Ank can be expressed
uniquely as a union of varieties (as long as no variety is allowed to contain another).

1.3 Dimension

Definition 1.21 (Dimension of a Topological Space). Suppose that X is a topological space. Then the
dimension of X, denoted dimX, is the supremum of all integers n such that there exists a strict chain
Z0 ⊊ Z1 ⊊ Z2 ⊊ · · · ⊊ Zn of closed irreducible subsets of X.

Now, it is easy to demonstrate that A1
k has dimension 1, as the only irreducible subsets of A1

k are single
points and the entire space. One might expect that Ank has dimension n, and indeed this is correct, but it
requires some commutative algebra to prove.

First, we will translate the problem into commutative algebra.

Definition 1.22 (Height and Krull Dimension). Suppose that A is a ring. Then the height of a prime ideal
p, denoted ht p, is the supremum of all integers n such that p0 ⊊ p1 ⊊ · · · ⊊ pn = p of prime ideals of A
culminating in p. The Krull dimension of A, denoted dimA, is the supremum of the heights of all of the
prime ideals of A. In particular, the Krull dimension of a field is 0, and the Krull dimension of a PID is 1.

Proposition 1.23 (Dimension of Algebraic Set is Dimension of Ring). The topological dimension of an affine
algebraic set Y is equal to the Krull dimension of the coordinate ring A(Y ). In particular, the topological
dimension of Ank is equal to the Krull dimension of A = k[x1, . . . , xn].

Proof. Follows immediately from definitions and Theorem 1.15.

Now, to show dimAnk = n, it suffices to show that dim k[x1, . . . , xn] = n. This fact feels like it should have a
trivial proof, but it does not. Nonetheless, it is true, and a consequence of the following theorem, which we
cite in the appendix.

Theorem 1.24. Let k be a field, and A an integral domain which is a finitely-generated k-algebra. Then the
dimension of A is equal to the transcendence degree of the quotient field FracA over k, and for any prime
ideal p ◁ A, we have ht p+ dimA/p = dimA.

Proof. See Appendix A.3.

Corollary 1.24.1. The dimension of Ank is n.

Proposition 1.25. If Y is a quasi-affine variety, then dimY = dimY .

Proof. By Proposition 6.23, dimY ≤ dimY . Thus dimY is finite, so there is a chain Z0 ⊆ · · · ⊆ Zn of
distinct closed irreducible subsets of Y with maximal length. In that case, Z0 must be a point P , and the
chain P = Z0 ⊆ · · · ⊆ Zn of distinct irreducible closed subsets of Y (see the proof of Proposition 6.23) is
maximal; that is, it cannot be extended further (see Proposition 6.13). Now, P corresponds to a maximal
ideal m of the affine coordinate ring A(Y ). The Zi correspond to prime ideals contained in m, so htm = n. On
the other hand, A(Y )/m ≃ k. Hence by Theorem 1.24, n = dimA(Y ) = dimY . Thus dimY = dimY .
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Theorem 1.26 (Krull’s Haupidealsatz). Let A be a Noetherian ring, and let a ∈ A be a nonunit non-zero
divisor. Then every minimal prime ideal containing a has height 1.

Proof. See Appendix A.3.

Theorem 1.27. A Noetherian domain A is a UFD if and only if every prime ideal of height 1 is principal.

Proof. See Appendix A.3.

Proposition 1.28. A variety Y in Ank has dimension n− 1 if and only if it is the zero set Z(f) of a single
nonconstant irreducible polynomial in A = k[x1, . . . , xn].

Proof. Firstly, because A is a UFD, Z(f) is a variety iff (f) is a prime ideal iff f is irreducible. Now, by
Theorem 1.26, p has height 1, so Z(f) has dimension n − 1 by Theorem 1.24. Conversely, a variety of
dimension n− 1 corresponds to a prime ideal p of height 1. Since A is a UFD, p is principal (see Theorem
1.27), generated by an irreducible polynomial f . Hence Y = Z(f), and we are done.

1.4 Projective Varieties

For the rest of this section, when it is not specified, k is an algebraically closed field.

Definition 1.29 (Projective n-Space). Let k be a field. Then, projective n-space over k, denoted Pnk , is the
set of equivalent classes of nonzero (n+1)-tuples (a0, . . . , an) of elements of k under the equivalence relation
given by (a0, . . . , an) ∼ (λa0, . . . , λan) for all λ ∈ k×. A representative (a0, . . . , an) of such an equivalence
class P is called a set of homogeneous coordinates for the point P , and denoted (a0 : a1 : · · · : an).

One may visualize Pnk as the set of lines through the origin in (n + 1)-affine space. One may decompose
projective space as Ank ∪ Pn−1

k by consdering the plane a0 = 1. This allows for an inductive decomposition
of projective n-space as a disjoint union Ank ⊔ An−1

k ⊔ · · · ⊔ A1
k ⊔ A0

k. Covering projective space with affine
spaces is a special case of a general technique which generalizes, in the case of defining schemes.

Definition 1.30 (Graded Ring). A graded ring is a ring S together with a decomposition S = ⊕d≥0Sd of
S into a direct sum of abelian groups Sd such that for any d, e ≥ 0, Sd · Se ⊆ Sd+e.

Definition 1.31 (Homogeneous Element of Degree d). A homogeneous element of degree d is an element of
Sd. Any element of S can be written uniquely as a finite sum of homogeneous elements.

Definition 1.32 (Homogeneous Ideals). An ideal a ⊆ S is a homogeneous ideal if a = ⊕d≥0(a ∩ Sd). In
other words, an ideal is homogeneous if it can be generated by a set of homogeneous elements.

Proposition 1.33 (Properties of Homogeneous Ideals). The finite product, arbitrary (direct) sum, and
arbitrary intersection of homogeneous ideals are all homogeneous. Furthermore, a homogeneous ideal a is
prime if and only if, for all homogeneous elements f, g, fg ∈ a implies f ∈ a or g ∈ a.

Example 1.34 (Polynomial Rings are Graded). The polynomial ring S = k[x0, . . . , xn] is a graded ring
with Sd being the homogeneous polynomials of degree d (that is, polynomials whose monomial terms all have
degree d). For example, x20 + x1x2 is a homogeneous polynomial of degree 2 in k[x0, x1, x2].

Definition 1.35 (Zero Sets in Projective Space). Suppose that T is a set of homogeneous polynomials in
S. Then the set {P ∈ Pnk | f(P ) = 0 for all f ∈ T} is well-defined and called the zero set of T . To see why,
notice that if f is a homogeneous polynomial of degree d and f(a0, . . . , an) = 0, then f(λa0, . . . , λan) =
λdf(a0, . . . , an) = λd0 = 0 for any λ ∈ k×.

Definition 1.36 (Zero Set of Homogeneous Ideal). Let a be a homogeneous ideal of S. Then we define
Z(a) = Z(T ), where T is the set of all homogeneous elements in a. Since S is a Noethering ring, any set of
homogeneous elements T has a finite subset f1, . . . , fr such that Z(T ) = Z(f1, . . . , fr).

Definition 1.37 (Algebraic Set in Pnk ). A subset Y of Pnk is an algebraic set if there exists a set T of
homogeneous elements of S such that Y = Z(T ).
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Definition 1.38 (The Zariski Topology on Pnk ). Using Proposition 1.33, we see that the finite union or
arbitrary intersection of algebraic sets are algebraic. Obviously ∅ = Z(1) and Pnk = Z(0), so the empty set
and the whole space are algebraic. Hence we may a topology, called the Zariski topology on Pnk , by defining
the algebraic sets to be the closed sets.

Definition 1.39 (Projective Algebraic Varieties). A projective (algebraic) variety is an irreducible algebraic
set in Pnk . An open subset of a projective variety is a quasi-projective variety.

Definition 1.40 (Homogeneous Ideal of Projective Subset). For a projective subset Y of Pnk , the homoge-
neous ideal of Y in S, denoted I(Y ), to be the ideal generated by

{f ∈ S | f is homogeneous and f(P ) = 0 for all P ∈ Y }.

Definition 1.41 (Projective Hyperplane). If f ∈ S is a linear homogeneous polynomial (a homogeneous
polynomial of degree 1), then Z(f) is called a (projective) hyperplane. In particular, Z(xi) is denoted by Hi.

Theorem 1.42 (Covering Projective Space with Affine Spaces). For each i, let Ui = Pnk \Hi. Then {Ui} is
an open cover of Pnk . Furthermore, Ui is homeomorphic to affine n-space under the homeomorphism

φi : Ui → An given by (a0, . . . , an) 7→
(
a0
ai
, . . . ,

ai−1

ai
,
ai+1

ai
,
an
ai

)
.

Proof. Clearly, φi is bijective, so it suffices to show that it is closed and continuous. For this, S = k[x0, . . . , xn]
and A = k[y1, . . . , yn]. Let Sh be the set of homogeneous elements of S. Now, define the map α : Sh → A
by α(f) = f(1, y1, . . . , yn). Similarly, define β : A → Sh as follows: if g ∈ A has degree d, then
β(g) = xd0g(x1/x0, . . . , xn/x0), which is a homogeneous polynomial of degree d.

Now let Y ⊆ Ui be closed, with closure Y in Pnk . This is an algebraic set, so Y = Z(T ) for some subset
T ⊆ Sh. Let T ′ = α(T ). Then it is easy to check that φ(Y ) = Z(T ′), so φ is closed. Similarly, if W ⊆ Ank
is closed, then W = Z(T ′) for some subset T ′ of A, and it is easy to check that φ−1(W ) = Z(β(T ′)) ∩ Ui.
Hence φ is also continuous, as desired. Therefore we are done.

Since Hi
∼= Pn−1

k , this result formalizes the earlier idea of considering the plane ai = 1 to decompose Pnk as
the disjoint union Ank ⊔ Pn−1

k . However, the open cover U1 ∪ · · · ∪ Un of Pnk often proves to be ultimately
more useful, because it breaks down projective n-space as a union composed entirely of affine n-spaces.

Corollary 1.42.1 (Decomposition of Projective Varieties). If Y is a projective (resp. quasi-projective)
variety, then Y is covered by the open sets Y ∩ Ui for i = 0, . . . , n which are each homeomorphic to affine
(resp. quasi-affine) varieties by the restriction φi|Y ∩Ui of the mapping φi defined above.

Now, we will recount many projective versions of affine results. The proof of these results usually amounts
to reducing to the affine case using either the direct definition or the affine covering discussed in Theorem
1.42. Because this tactic is instructive (and because, unfairly, all of these are Hartshorne exercises instead
of theorems with included proofs), I still offer proofs for them.

Theorem 1.43 (The Homogeneous Nullstellensatz). Let k be an algebraically closed field and S = k[x0, . . . , xn]
with the usual graded ring structure. Suppose that a ⊆ S is a homogeneous ideal such that Z(a) ̸= ∅. Then
I(Z(a)) =

√
a.

Proof. Let a ⊆ S be a homogeneous ideal with Z(a) ̸= ∅. Firstly, notice that obviously
√
a ⊆ I(Z(a)). On

the other hand, suppose that f ∈ I(Z(a)). Since Z(a) ̸= ∅, either f = 0 or deg(f) > 0. In the former case,
clearly f = 0 ∈

√
a. In the latter case, (a0 : a1 : · · · : an) ∈ Pnk is a zero of f if and only if (a0, . . . , an) ∈ An+1

k

is a zero of f (when f is considered as a map An+1 → k). Then, by the ordinary Nullstellensatz, f ∈
√
a

anyways. Hence in any case, f ∈ I(Z(a)) implies f ∈ a. Therefore I(Z(a)) ⊆ a, as desired.

Proposition 1.44 (Criterion for Emptiness). Suppose that a ⊆ S is a homogeneous ideal. Then the following
conditions are equivalent: (i) Z(a) = ∅, (ii)

√
a = S or the “irrelevant maximal ideal” S+ = ⊕d>0Sd, and

(iii) Sd ⊆ a for some d > 0.
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Proof.
(i) ⇒ (ii): If Z(a) is empty, then in An+1

k either Z(a) is empty or Z(a) = {(0, . . . , 0)}. In the former case,√
a = I(Z(a)) = k[x0, . . . , xn] = S. In the latter case,

√
a = I(Z(a)) = (x0, . . . , xn) = S+.

(ii) ⇒ (iii): In either case,
√
a contains S+. Then, there exists some integer mi such that xmi

i ∈ a for each
i = 0, . . . , n. Take m = maxi{mi}, so that xmi ∈ a for each i. But then every monomial of degree m(n+ 1)
is divisible by xmi for some i by the Pigeonhole Principle, so Sm(n+1) ⊆ a, as desired.

(iii) ⇒ (i): Let a ⊇ Sd for some d > 0. Then xdi ∈ a for i = 0, . . . , n, and they have no common zeroes in
Pnk , so Z(a) = ∅.

Proposition 1.45 (Properties of Algebraic Sets in Pnk ).

(1) If T1 ⊆ T2 are subsets of homogeneous elements of S, then Z(T1) ⊇ Z(T2).

(2) Conversely, if Y1 ⊆ Y2 are subsets of Pnk , then I(Y1) ⊆ I(Y2).

(3) If Y1, Y2 ⊆ Pnk , then I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

(4) For any subset Y ⊆ Pnk , Z(I(Y )) = Y , the closure of Y .

Proof. All four are trivial.

Theorem 1.46 (Algebro-Geometric Correspondence for Projective Space). Suppose that k is an algebraically
closed field. Then there is an inclusion-reversing correspondence between types of closed subsets of Pnk and
types of ideals in the graded rings in S = k[x0, . . . , xn], as follows:

1. Homogeneous radical ideals (other than S+) correspond to closed subsets of Pnk .

2. Homogeneous prime ideals (other than S+) correspond to irreducible subsets of Pnk .

3. Maximal ideals of A (other than S+) correspond to single points of Pnk .

Recall that S+ = ⊕d>0Sd is the “irrelevant maximal ideal” covered in Proposition 1.44.

Proof. This follows immediately from the identical results in the affine case, as well as Theorem 1.43, Propo-
sition 1.44, and Proposition 1.45.

The affine cone is a useful tool for reducing projective subsets to affine subsets.

Definition 1.47 (The Affine Cone). Let θ : An+1
k \ {(0, . . . , 0)} → Pnk be the projection map (x0, . . . , xn) 7→

(x0 : · · · : xn). Then if Y ⊆ Pnk , the affine cone over Y is the set C(Y ) = θ−1(Y ) ∪ {(0, . . . , 0)}.

Proposition 1.48 (The Topology of Projective Space).

(i) Pn is a Noetherian topological space.

(ii) Every algebraic set in Pn can be written uniquely as a finite union of irreducible algebraic sets, no one
containing another. These are called its irreducible components.

(iii) Suppose that Y is a projective variety with homogeneous coordinate ring S(Y ) = S/I(Y ). Then
dimS(Y ) = dimY + 1. In particular, dimPn = n.

(iv) A projective variety Y ⊆ Pnk has dimension n− 1 if and only if it is the zero set of a single irreducible
homogeneous polynomial f of positive degree. Y is called a hypersurface in Pnk .

Proof.
(i): By Proposition 1.45, a descending chain of irreducible closed subsets of Pnk corresopnding to an ascend-
ing chain of prime ideals in k[x0, . . . , xn], which must stabilize since k[x0, . . . , xn] is Noetherian. Hence the
descending chain of irreducible closed subsets also stabilizes, as desired.
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(ii): This is an immediate corollary of Proposition 1.20 and (i).

(iii): First, recall from Corollary 1.42.1 that Y has an open cover {Y ∩ Ui} for i = 0, . . . , n, and that fur-
thermore Y ∩ Ui is affine for each i. Yet recall from Proposition 6.24 that dimY = supdimY ∩ Ui. Since
the supremum is taken over a finite set, there exists an integer i such that dimY = dimY ∩ Ui.

Assume, without loss of generality, that i = 0, and let Y ′ = Y ∩ U0. Then consider the ring Sx0 taken by

localizing S to make x0 invertible. Then, suppose that f
xn
0
∈ Sx0 has degree 0. Then f

x0

n
= f(1, x1

x0
, . . . , xn

x0
)

is the element α(f) ∈ A(Y ′), where α is defined for the proof of Theorem 1.42 (asuming that we take xi

x0
to

be the ith coordinate of affine space for each i).

On the other hand, given an element g(x1

x0
, . . . , xn

x0
) ∈ A(Y0), by multiplying through by xd0 (where d is the

degree of g as a polynomial in k[x1

x0
, . . . , xn

x0
]), we get a homogeneous polynomial β(g). Yet β(g) is naturally

associated to the degree zero element β(g)

xd
0

∈ Sx0
. Since these two processes are mutual inverses, they give

an isomorphism of A(Y ′) with the subring of Sx0
of elements of degree 0. Then Sx0

≃ A(Y ′)[x0,
1
x0
]. Yet the

transcendence degree of Frac(A(Y ′)[x0,
1
x0
]) is one greater than the transcendence degree of Frac(A(Y ′)),

whence by Theorem 1.24, dimSx0
= dimA(Y ′)[x0,

1
x0
] = dimA(Y ′) + 1 = dimY ′ + 1 = dimY + 1.

(iv): Let Y ⊆ Pn have dimension n − 1. Then dim k[Y ] = dimY + 1 = n. This corresponds to an
n-dimensional variety Y ′ in An+1. By Proposition 1.28, I(Y ′) is principal, generated by an irreducible poly-
nomial f . Then, it is easy to check that Y = Z(β(f)) (and clearly β(f) must be irreducible and non-constant
since Y is proper and irreducible).

Conversely, let f ∈ k[x0, . . . , xn] be a non-constant irreducible homogeneous polynomial defining an irre-
ducible variety Z(f). Its ideal (f) has height 1 by Krull’s Haupidealsatz (Theorem 1.26), whence C(Z(f))
(which is equal to the affine zero set of f in An+1

k ) has dimension n. But then S(Z(f)) = A(C(Z(f))) has
dimension n, so by (iii), the projective zero set Z(f) has dimension n+ 1.

1.5 Morphisms and Regular Maps

For the rest of this section, let k be an algebraically closed field.

Definition 1.49 (Regular at a Point). Let Y be a quasi-affine variety in Ank . A function f : Y → k is
regular at a point P ∈ Y if there is an open neighborhood U of P and polynomials g, h ∈ A = k[x1, . . . , xn]
such that h is nowhere zero on U and f = g/h on U . We say that f is regular on Y if it is regular at every
point of Y .

Lemma 1.50. A regular function Y → k is continuous when k is topologized by identifying it with A1
k.

Proof. Let f : Y → k be regular. Since any proper closed set of A1
k is finite, it suffices to show that the

preimage of any point is closed. Yet this is easy by passing to an open cover {Ui} of Y such that f is a ratio
of polynomials on each Ui and using the fact that closedness is a local condition (see Lemma 6.12).

Definition 1.51 (Regular at a Point, Projective). Let Y be a quasi-projective variety in Pnk . A function
f : Y → k is regular at a point P ∈ Y if there is an open neighborhood U of P and polynomials g, h ∈ S =
k[x0, . . . , xn], homogeneous with the same degree, such that h is nowhere zero on U and f = g/h on U . We
say that f is regular on Y if it is regular at every point of Y .

Note that the requirement that g and h are homogeneous with the same degree ensures that g/h can be
viewed as a well-defined function. Again, a regular function on a quasi-projective variety is continuous.

Lemma 1.52. Suppose that f and g are regular functions on a variety X and f = g on some nonempty
open subset U ⊆ X. Then f = g everywhere.

Proof. Let V be the set of points P ∈ X where f(P ) = g(P ). Now, U ⊆ V , and U is a nonempty open of an
irreducible space, so it is dense (see Proposition 6.13). Hence, to show that V = X, it suffices to show that
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V is closed. For this, one passes to an open cover {Ui} of X such that f and g are ratios of polynomials on
each Ui and uses the fact that closedness is a local condition (see Lemma 6.12).

Definition 1.53 (Category of Varieties). Let k be a fixed algebraically closed field. A variety of k is any
affine, quasi-affine, projective, or quasi-projective variety. These form the objects of a category of varieties
over k, whose morphisms are continuous maps φ : X → Y such that for every open set V ⊆ Y and every
regular function f : V → k, the function f ◦ φ : φ−1(V ) → k is regular. An isomorphism is, as usual, a
morphism with a two-sided inverse morphism, and two varieties X and Y are called isomorphic if there is
an isomorphism between them.

Definition 1.54 (Invariants of Varieties). Let Y be a variety. Then,

(1) O(Y ) is the ring of all regular functions on Y .

(2) OP,Y (or simply OP ), called the local ring of P on Y , is the ring of germs of regular functions on Y .
That is, an element of OP is a pair ⟨U, f⟩ where U is an open subset of Y containing P , and f is a
regular function on U , and where ⟨U, f⟩ = ⟨V, g⟩ if f = g on U ∩ V . This is indeed a local ring (with
residue field k), as its maximal ideal m is the set of germs of regular functions which vanish at P .

(3) If Y is a variety, we define the function field K(Y ) of Y as follows: an element ofK(Y ) is an equivalence
class of pairs ⟨U, f⟩ where U is a nonempty open subset o Y , f is a regular function U , and where we
identify ⟨U, f⟩ and ⟨V, g⟩ if f = g on U ∩ V . The elements of K(Y ) are called rational functions on Y .

Notice that there are natural maps O(Y ) → OP → K(Y ), which are injective by Lemma 1.52.

Theorem 1.55. Let Y ⊆ Ank be an affine variety with affine coordinate ring A(Y ). Then:

(a) O(Y ) ≃ A(Y );

(b) For each point P ∈ Y , let mP ⊆ A(Y ) be the ideal of functions vanishing at P . Then P 7→ mP given
a 1-1 correspondence between the points of Y and the maximal ideals of A(Y );

(c) For each P , OP ≃ A(Y )mP
, and dimOP = dimY .

(d) K(Y ) is isomorphic to the quotient field of A(Y ) and hence K(Y ) is a finitely generated extension file
of k of transcendence degree dimY .

Proof. Page 17 of Hartshorne.

A similar result holds for projective varieties, but we need to introduce some new notation.

Definition 1.56 (Grading Localizations of Graded Rings). Suppose that S is a graded ring and T is a
multiplicative subset of homogeneous elements. Then T−1(S) has a natural grading given by deg(f/g) =
deg(f)−deg(g). In particular, in the case T = S \p, we have a local graded ring Sp. The subring of elements
of degree 0 in this ring is denoted S(p), and is itself a local ring with maximal ideal pp ∩ S(p). Similarly, if
f ∈ S is a homogeneous element, we denote by S(f) the subring of elements of degree 0 in Sf .

Theorem 1.57. Let Y be a projective variety with homogeneous coordinate ring S(Y ). Then:

(a) O(Y ) = k;

(b) For any point P ∈ Y , let mP ⊆ S(Y ) be the ideal generated by the set of homogeneous f ∈ S(Y )
vanishing at P . Then OP = S(Y )(mP ).

(c) K(Y ) ≃ S(Y )((0)).

Proof. Pages 18-19 of Hartshorne.

Lemma 1.58. Let X be any variety, and let Y ⊆ Ank be an affine variety. A map of sets ψ : X → Y is
a morphism if and only if xi ◦ ψ is a regular function on X for each i, where x1, . . . , xn are the coordinate
functions on Ank .
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Proof. Clearly, if ψ is a morphism, then xi ◦ ψ is regular by definition of a morphism. On the other hand,
if xi ◦ ψ is regular, then f ◦ ψ is regular for any polynomial f(x1, . . . , xn) (since the sum and product of
regular functions is regular). Now, take V ⊆ Y closed; that is, V = Z(f1, . . . , fn) for some polynomials
f1, . . . , fn ∈ A. Yet, just as V =

⋃n
i=1 f

−1
i (0) implies ψ−1(V ) =

⋂n
i=1 ψ

−1(f−1
i (0)) =

⋂n
i=1(fi ◦ ψ)−1(0).

Since {0} is closed in A1
k, and ψ ◦ fi is regular and hence continuous, (fi ◦ψ)−1(0) is closed. Hence ψ−1(V ),

as the intersection of closed sets, is closed. Therefore ψ is continuous. Furthermore, since regular functions
on open subsets of Y are locally quotients of polynomials, g ◦ ψ is regular for any regular function g on any
open subset of Y . Hence ψ is a morphism.

Proposition 1.59. Let X be any variety and let Y be an affine variety. Then there is a natural bijective
mapping of sets α : Hom(X,Y )

∼→ Hom(A(Y )),O(X)).

Proof. Given a morphism φ : X → Y , φ carries regular functions on Y to regular functions on X. Hence φ
induces a map O(Y ) to O(X), and since O(Y ) ≃ A(Y ), we have an induced map α(φ) : A(Y ) → O(X).

Conversely, suppose we are given a morphism ψ : A(Y ) → O(X) of k-algebras. Since Y is an affine variety,
Y ⊆ Ank , so that A(Y ) = k[x1, . . . , xn]/I(Y ). Let xi be the image of xi in A(Y ), and consider the elements
ξi = ψ(xi) ∈ O(X). These are global functions on X, so we can use them to define a mapping β(ψ) : X → Ank
by β(ψ)(P ) = (ξ1(P ), . . . , ξn(P )). Furthermore, the image of β(ψ) is contained in P , since we may easily
check that for any f ∈ I(Y ), f(ψ(P )) = 0 (and of course Y = Z(I(Y )) as Y is closed). Therefore, β(ψ) is
an induced map X → Y .

Now that we have maps α : Hom(X,Y ) → Hom(A(Y )),O(X)) and β : Hom(A(Y )),O(X)) → Hom(X,Y ),
it suffices to show these are mutual inverses. Yet this is simple and left as an exercise to the reader, as is
showing naturality.

Corollary 1.59.1. If X,Y are two affine varieties, then X and Y are isomorphic if and only if A(X) and
A(Y ) are isomorphic k-algebras.

Now that we have a robust notion of isomorphism, we may define what it means for an arbitrary variety to
be “affine”, and explore why affine varieties form a basis for all other varieties.

Definition 1.60 ((Quasi)-Affine). An arbitrary variety is called “affine” if it is isomorphic to an affine
variety. Similarly, an arbitrary variety is called “quasi-affine” if it is isomorphic to a quasi-affine variety.

Lemma 1.61. Let Y be a hypersurface in Ank which is the zero set of f ∈ k[x1, . . . , xn]. Then Ank \ Y is
isomorphic to the hypersurface H in An+1 which is the zero set of xn+1f = 1. In particular, Ank \Y is affine
with affine coordinate ring k[x1, . . . , xn]f .

Proposition 1.62. On any variety Y , there is a base for the topology consisting of open affine subsets.

Proof. Choose a point P ∈ Y and an open neighborhood U of Y . It suffices to show that there is an open
affine neighborhood V of P contained in U . Now, as an open subset of a variety, U is a variety, so we may
assume that U = Y . Furthermore, since by Corollary 1.42.1 any variety is covered by open quasi-affine
varieties, we may assume that Y is quasi-affine in Ank .

Now, let Z = Y \ Y . I claim that this is a closed subset of Ank . To see why, notice that Y is contained in
an affine variety V , which is closed in Ank , so Y ⊆ V . Then Y \ Y = Y ∩ (V \ Y ) is closed in V as it is the
intersection of two closed subsets of V . But then Y \ Y is the closed subset of a closed subspace V of Ank
and hence closed in Ank .

Hence Z has a corresponding ideal I(Z). Since P ̸∈ Z, there exists f ∈ I(Z) such that f(P ) ̸= 0. Let H be
the hypersurface f = 0 in Ank . Then since P ̸∈ H, P ∈ Y \ (Y ∩H), which is an open subset of Y since H is
closed in Ank whence Y ∩H is closed in Y . Furthermore, Y \ Y ∩H is a closed subset of An \H, which is
affine by Lemma 1.61. Hence Y \ Y ∩H is a closed subset of an affine variety and hence is affine. Then, by
Corollary 1.20.1, we may choose an open affine variety contained in Y \ Y ∩H, which is the desired affine
neighborhood of P . Therefore we are done.
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1.6 Rational Maps

Definition 1.63 (Separatedness). A variety X is called separated if for any other variety Y and any mor-
phisms φ,ψ : Y ⇒ X, the set of points where φ and ψ agree is a closed subset of Y .

In turns out that all varieties are separated. Later, when we enlarge our definition of “variety” to be a
specific type of scheme, we will ensure that separatedness is part of the definition of a variety.

Proposition 1.64 (The Diagonal Condition). Consider the maps π1, π2 : X×X ⇒ X given by π1(x, y) = x
and π2(x, y) = y respectively. Let ∆(X) be the set of points where π1 and π2 agree. Then X is separated if
and only if ∆(X) is closed in X ×X.

Proof. The “only if” direction follows immediately from the definition of separatedness. For “if”, suppose
that ∆(X) is closed in X ×X. Then take φ,ψ : Y ⇒ X; this induces a map (φ,ψ) : Y → X ×X. Since φ,ψ
are continuous, so is (φ,ψ). The set of points in Y where φ and ψ agree is precisely the preimage of ∆(X),
which is closed if ∆(X) is closed since (φ,ψ) is continuous. Hence we are done.

Lemma 1.65. Let X be an affine variety. Then X is separated.

Proof. Take any variety Y and morphisms φ,ψ : Y ⇒ X. By assumption, X ⊆ Ank for some algebraically
closed field k and some positive integer n. Now, the set of points where φ and ψ agree is equal to the set of
points where ι ◦φ and ι ◦ψ agree. Therefore, assume that φ,ψ map into Ank . Notice that φ(y) = ψ(y) if and
only if xi(φ(y)) = xi(ψ(y)) (where xi is the ith coordinate function) for each i. Hence {y ∈ Y | φ(y) = ψ(y)}
is the zero locus of {x1(φ(y))− x1(ψ(y)), . . . , xn(φ(y))− xn(ψ(y))} and hence closed.

Here is another lemma extending the behavior along the usual theme “closedness is a local property”.

Lemma 1.66. Let X be a variety such that for all x, y ∈ X, there is an open affine U containing both x
and y. Then X is separated.

Proof. Consider two functions φ,ψ : Y ⇒ X and let Z = {y ∈ Y | φ(y) = ψ(y)}. Take z ∈ Z; in suffices to
show z ∈ Z. In other words, it suffices to show φ(z) = ψ(z).

By assumption, there is an open affine V ⊆ X containing φ(z) and ψ(z). Let U = φ−1(V )∩ψ−1(V ); this is
an open neighborhood of z. Then φ|U , ψ|U map into affine varieties, whence Z ∩U is closed. Since Z ∩U is
closed, Z ∩ U = Z ∩ U = Z ∩ U , so z ∈ Z ∩ U implies z ∈ Z ∩ U implies z ∈ Z, as desired.

Corollary 1.66.1. Using our current definition of “variety” (that is, any variety is affine, quasi-affine,
projective, or quasi-projective), varieties are separated.

Lemma 1.67 (Morphisms Equal on Nonempty Opens are Equal). Let X and Y be varieties and φ,ψ : X ⇒
Y be morphisms. Suppose there is a nonempty open subset U ⊆ X such that φ|U = ψ|U . Then φ = ψ.

Proof. The set upon which φ = ψ is closed (by separatedness) and dense (by hypothesis), so equal to X.

Definition 1.68 (Rational Map). Let X,Y be varieties. A rational map φ : X → Y is an equivalence class
of pairs ⟨U,φU ⟩ where U is a nonempty open subset of X and φU is a morphism of U toY , and where ⟨U,φU ⟩
and ⟨V, φV ⟩ are equivalent if φU and φV agree on U ∩ V . The rational map φ is dominant if for some (and
hence every) pair ⟨U,φU ⟩, the image of φU is dense in Y .

Notice that we require Lemma 1.67 to see that this is indeed an equivalence relation.

Definition 1.69 (Birational Map). A birational map φ : X → Y is a rational map with an inverse rational
map; that is, a rational map ψ : Y → X such that ψ ◦ φ = idX and φ ◦ ψ = idY (as rational maps).

Now, we will explore how birational maps form a very natural notion of “morphism”. For this, we demon-
strate that the category of varieties over k, with morphisms being dominant rational maps, is equivalent to
the (opposite) category of finitely generated field extensions of k.

Proposition 1.70. Any dominant rational map φ : X → Y induces a homomorphism of K-algebras from
K(Y ) to K(X).
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Proof. Suppose that φ is represented by, say ⟨U,φU ⟩. Suppose we have a rational function f ∈ K(Y )
represented by ⟨V, f⟩. Then since φU (U) is dense in Y , φ−1

U (V ) is a nonempty open subset of X, so f ◦ φU
is a regular function on φ−1

U (V ). This allows us to define a map ψ : K(Y ) to K(X) by f 7→ f ◦φU , which is
clearly a homomorphism.

Theorem 1.71. For any two varieties X and Y , the above construction gives a bijection between (i) the set
of dominant rational maps from X to Y , and (ii) the set of k-algebra homomorphisms from K(Y ) to K(X).

Proof. It suffices to construct an inverse to the above construction. For this, take a k-algebra homomorphism
θ : K(Y ) → K(X). By Proposition 1.62, Y is covered by open affine varieties, so we may assume that Y
is an affine variety. Let A(Y ) be an affine coordinate ring, and let y1, . . . , yn be generators for A(Y ) as a
k-algebra. Then θ(y1), . . . , θ(yn) are rational functions on X. We can find an open set U ⊆ X such that the
functions θ(yi) are all regular on U . Then θ defines an injective homomorphism of k-algebras A(Y ) → O(U).
By Proposition 1.59, this corresponds to a morphism φ : U → Y , which gives a dominant rational map
X → Y . It is easy to see this construction is the inverse of the one discussed in Proposition 1.70.

Theorem 1.72. The above correspondence gives a contravariant equivalence of categories of the category of
varieties and dominant rational maps with the category of finitely generated field extensions of k.

Proof. It suffices to show that (1) for any variety Y , K(Y ) is finitely generated over k, and (2) conversely,
if K/k is a finitely-generated field extension, then K = K(Y ) for some Y . For (1), if Y is a variety, then
K(Y ) = K(U) for any open affine subset, so we may assume Y is affine. Then K(Y ) is a finitely generated
field extension of k by Theorem 1.55. Conversely, let K be a finitely generated field extension of k, generated
by y1, . . . , yn. Let B be the sub-k-algebra of K generated by y1, . . . , yn; this is a domain since it is a
subalgebra of K. Then B is a quotient of the polynomial ring A = k[x1, . . . , xn], so B ≃ A(Y ) for some
variety Y in Ank . Then K ≃ K(Y ), so (2) is also true. Hence we are done.

Corollary 1.72.1. For any two varieties X,Y the following conditions are equivalent:

(i) X and Y are birationally equivalent;

(ii) there are open subsets U ⊆ X and V ⊆ Y with U isomorphic to V ,

(iii) K(X) ≃ K(Y ) as k-algebras.

Proof. The only one which does not follow from the above theorem or the definition is (i) ⇒ (ii), but even
this follows immediately by definition-shuffling.
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2 Schemes

Right now, our notion of variety has three major limitations. Firstly, most of our nontrivial results require
us to work over an algebraically closed field. This poses a major issue, especially for number theorists
and arithmetic geometers in particular. Secondly, our varieties currently need an embedding into affine or
projective space, but it would be nice to have some kind of abstract variety. In general, it is often useful
to define mathematical objects which only look locally like objects we are familiar with; for example, after
working through basic real analysis a natural next step is to define a manifold, which locally looks like Rn.
Finally, only being able to work with irreducible algebraic sets can cause issues; for example, with our current
definition, the intersection of two varieties is not necessarily a variety. Schemes, invented by Grothendieck,
generalize varieties (in a precise way which we will discuss later) in a way that solves all three issues.

2.1 Sheaves and Morphisms

Definition 2.1 (Topological Category). Suppose thatX is a topological space. ThenTop(X) is the category
whose objects are the open subsets of X and whose morphisms are inclusion maps U ↪→ V .

Definition 2.2 (Presheaf). Let X be a topological space. A presheaf F of abelian groups (resp. sets,
rings) on X is a contravariant functor from the category Top(X) to the category of abelian groups (resp.
sets, rings). That is, a presheaf F of abelian groups (resp. sets, rings) consists of the data:

(1) an abelian group (resp. set, ring) F (U) for every open subset U ⊆ X, and

(2) a abelian group homomorphism (resp. function, ring homomorphism) ρV U : F (V ) → F (U), called a
“restriction map”, for every inclusion U ⊆ V of open subsets of X,

such that (i) ρUU = idF(U) for each open U ⊆ X and (ii) if U ⊆ V ⊆ W is a chain of open subsets, then
ρWU = ρV U ◦ ρWV . Notice that, in particular, this implies that F (∅) = 0.

Definition 2.3 (Section and Restriction). An element of F (U) is a section of the presheaf F over the open
set U . Often, if s ∈ F (U) and V ⊆ U , we denote ρUV (s) by s|V , as if we are “restricting” s to V .

Definition 2.4 (Sheaf). A presehaf F on a topological space X is a sheaf if it satisfies the following axioms:

(1) If U is an open set, if {Vi} is an open covering of U , and s ∈ F (U) is an element such that s|Vi = 0
for all i, then s = 0 (uniqueness axiom).

(2) If U is an open set, if {Vi} is an open covering of U , and if we have elements si ∈ F (Vi) for each i,
with the property that for each i, j, si|Vi∩Vj

= sj |Vi∩Vj
, then there is an element s ∈ F (U) such that

s|Vi = si for each i (gluing axiom).

Notice that by the uniqueness axiom, the section obtained by the gluing axiom is necessarily unique.

Example 2.5 (Sheaf of Regular Functions). Let X be a variety over the field k. For each open set U ⊆ X,
let O(U) be the ring of regular functions U → k, and for each V ⊆ U , let ρUV : O(U) → O(V ) be given by
restriction of functions. Then O is a sheaf of rings on X, called the sheaf of regular functions on X.

Example 2.6 (Constant Sheaf). Let X be a topological space and A an abelian group. Then the constant
sheaf O on X is given by assigning O(U) = A for each open subset U ⊆ X and letting ρUV : A→ A be the
identity map for each V ⊆ U .

Definition 2.7 (Stalk). If F is a presheaf on X, and x ∈ X is a point, then the stalk Fx of F at x is
the direct limit lim−→F (U) of the groups F (U) for all open sets U containing x via the restriction maps ρ.
Elements of the stalk are called germs of sections of F at x. Explicitly, an element of Fx is an equivalence
class ⟨U, s⟩, where U is an open neighborhood of x, s ∈ F (U), and ⟨U, s⟩ = ⟨V, t⟩ iff there is an open
neighborhood W ⊆ U, V of x such that s|W = t|W . Given a section s ∈ F (U), we define the image sx of s
in Fx to be the equivalence class which ⟨U, s⟩ falls into.

Example 2.8. The stalk OP of the sheaf of regular functions of a variety X is the local ring of P on X.
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Stalks are remarkably useful, because the sheaf axioms imply that sections are determined by their local
behavior. In particular, sections are determined by their stalks:

Lemma 2.9. Suppose F is a sheaf on X, and s, t ∈ F (U) satisfy sx = tx in Fx for all x ∈ U . Then s = t.

Proof. Take x ∈ U . Since sx = tx, there exists some neighborhood Wx of x such that s|Wx
= t|Wx

. That is,
(s− t)|Wx = 0. But the collection {Wx} covers U , so by the uniqueness axiom s− t = 0 whence s = t.

Definition 2.10 (Morphism of (Pre)Sheaves). A morphism of (pre)sheaves φ : F → G is simply a natural
transformation F → G . That is, φ consists of morphisms φU : F → G (U) for each open set U , such that
for each inclusion V ⊆ U , the diagram

F (U) G (U)

G (V ) G (V )

ρUV

φU

ρ′UV

φV

commutes (where ρUV is the restriction map U → V in F and ρ′UV is the restriction map U → V in G ).
An isomorphism is a morphism of sheaves with a two-sided inverse.

Notice that any morphism φ : F → G induces a morphism φx : Fx → Gx on the stalks for any point x ∈ X.
It turns out that we can check if two maps are equal by simply looking at these stalk maps:

Lemma 2.11 (Morphisms Equal on Stalks are Equal). Suppose that φ,ψ : F → G satisfy φx = ψx for each
x ∈ X. Then φ = ψ.

Proof. This follows immediately from Lemma 2.9.

Similarly, we can tell if a map is an isomorphism by looking at these stalk maps:

Proposition 2.12 (Isomorphism of Sheaves is Isomorphism on Stalks). Let φ : F → G be a morphism of
sheaves on a topological space X. Then φ is an isomorphism if and only if the induced map on the stalk
φx : Fx → Gx is an isomorphism for every x ∈ X.

Proof. Because the map F 7→ Fx is functorial in F for any point x ∈ X, it is clear that if φ has a two-sided
inverse so does φx for any x ∈ X. Therefore, assume that φx is an isomorphism for all x ∈ X.

To show that φ is an isomorphism, it suffices to show that φU : F (U) → G (U) is an isomorphism for each
open U ⊆ X (since then we may define ψ : G → F by ψU = φ−1

U , and this is clearly natural in U). Therefore,
it suffices to show that φU is injective and surjective.

For the former, suppose s ∈ F (U) satisfies φ(s) = 0. This implies that φ(s)x = 0 for every x ∈ U . Yet
φ(s)x = φx(sx), so φx(sx) = 0 for all x ∈ U . Since φx is injective by hypothesis, sx = 0 for all x ∈ U . Then
by Lemma 2.9, s = 0. For the latter, take t ∈ G (U). Since φx is surjective for all x, for each x ∈ U we can
find sx ∈ Fx such that φx(sx) = tx. Let sx be represented by a section s(x) on a neighborhood Vx of P .
Because φx(sx) = tx, there must exist a neighborhood Wx ⊆ Vx upon which φ(s(x))|Wx

= t|Wx
. Replace

s(x) with s(x)|Wx for all x, so that φ(s(x)) = t|Wx for each x ∈ U . Now, I claim that we can glue the s(x)
together into a section s ∈ F (U) using the gluing axiom. For this, notice that

(1) The collection {Wx}x∈U covers U , and we have a section s(x) ∈ F (Wx) for each x ∈ U .

(2) Suppose that x and y are distinct points. Then s(x)|Wx∩Wy
and s(y)|Wx∩Wy

are both sent by φ to
t|Wx∩Wy , whence by injectivity they are equal. Therefore, the sections are compatible.

Hence we may apply the gluing axiom to get a section s ∈ F (U) such that s|Wx
= s(x) for each x ∈ U .

I claim that φ(s) = t. For this it suffices to show φ(s) − t = 0, and indeed this follows by the uniqueness
axiom, as (φ(s)− t)|Wx

= φ(s)|Wx
− t|Wx

= φ(s(x))− t|Wx
= 0 for each x ∈ U . Hence we are done.
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Theorem 2.13 (Sheafification). Given a presheaf F , there is a sheaf F+ and a morphism θ : F → F+

with the following universal property: if G is a sheaf and φ : F → G is a morphism, then there is a unique
morphism ψ : F+ → G such that the following diagram commutes:

F F+

G

φ

θ

ψ

The pair (F+, θ) is unique up to unique isomorphism, so it may reasonably be called the sheafification of
F . Furthermore, θx : F → F+

x is an isomorphism for all x ∈ X. Finally, if F is already a sheaf, then θ
is an isomorphism, so F ≃ F+.

Proof. Define a presheaf F+ as follows:

(1) For any open set U , F+(U) is the set of functions s : U →
∐
x∈U Fx such that (i) s(x) ∈ Fx for each

x, and (ii) for each x ∈ U there is a neighborhood V ⊆ U of x and t ∈ F (V ) such that for all y ∈ V ,
s(y) = ty. Note that F+(U) naturally has an abelian group or ring structure if F is a sheaf of abelian
groups or rings.

(2) Given an inclusion of open sets V ⊆ U , we define the restriction map ρUV : F+(U) → F+(V ) as the
usual restriction of functions.

Firstly, we will verify that F+ is a sheaf. The uniqueness axiom is simple: if {Vi} covers U and s ∈ F (U)
satisfies s|Vi = 0 for each i, then clearly s = 0; it restricts to the zero function on a cover of U , so it is the
zero function. The gluing axiom is similarly simple: suppose {Vi} covers U and si ∈ F (Vi) satisfy the com-
patibility requirement. Then clearly we can glue together the functions si into a function s : U →

∐
x∈U Fx;

since properties (i) and (ii) are both local, they also follow so s ∈ F (U), as desired.

Next, we define the map θ. Let θU be given by sending each section s ∈ F (U) to the function u 7→ su.
Clearly the output function satisfies (i) and (ii), so θU is indeed a morphism F (U) → F+(U), and it is easy
to check that it is natural, so θ is indeed a morphism F → F+. Next, we will show that θx is an isomorphism
for each x. For this, we will define an inverse map κx. Namely, take sx ∈ F+

x with representative (U, s),
where U is a neighborhood of x and s ∈ F+(U). By (ii), there is a neighborhood V and t ∈ F (V ) such
that for all s(y) = ty. This t is necessarily unique by Lemma 2.9, and we define κx(sx) = t. It is easy to
check that this is a well-defined map, and furthermore that it is the two-sided inverse of θx, as desired.

Notice that this immediately implies that if F is already a sheaf, then θ is an isomorphism by Proposition
2.12. It remains to show the described universal property. First, we will show uniqueness: suppose that
ψ,ψ′ satisfy φ = ψ ◦ θ and φ = ψ′ ◦ θ. Then, by taking stalks, φx = ψx ◦ θx and φx = ψ′

x ◦ θx. But
then ψx = φx ◦ θ−1

x = ψ′
x (since θx is an isomorphism), whence by Lemma 2.11, ψ = ψ′. Next, we will

show existence. Suppose that we have a morphism of presheaves φ : F → G and G is a sheaf. Now, given
f ∈ F+(U), define ψ′(f) to be the composition of f with the natural map∐

x∈U
φx :

∐
x∈U

Fx →
∐
x∈U

Gx.

Now, notice that ψ′(f) satisfies properties (i) and (ii) for G , so ψ′(f) ∈ G +(U). Hence ψ′ is a morphism
F+ → G +. Yet the map θ′ : G → G + is an isomorphism by our above work, so if we define ψ = θ′−1 ◦ ψ′

we get a map F+ → G , as desired. Now, we want to prove that φ = ψ ◦ θ. For this, it suffices by Lemma
2.11 to check that the stalks are equal; yet this is easy using the definition.

Finally, uniqueness of (F , θ) follows from the universal property immediately via the usual argument.

Definition 2.14 (Presheaf Kernel, Presheaf Cokernel, Presheaf Image). Let φ : F → G be a morphism of
presheaves. Then, we define the following presheaves:

1. The presheaf kernel of φ is the presheaf given by U 7→ ker(φU ).
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2. The presheaf cokernel of φ is the presheaf given by U 7→ coker(φU ).

3. The presheaf image of φ is the presheaf given by U 7→ im(φU ).

Proposition 2.15. Let φ : F → G be a morphism of sheaves. Then the presheaf kernel of φ is a sheaf.

Proof. Let K be the presheaf kernel of φ. Take an open set U ⊆ X and s ∈ K (U). Let {Ui} be an open
cover of U , and suppose s|Ui

= 0 for all i. Since K (U) ⊆ F (U), s is also naturally an element of F (U),
and F satisfies the uniqueness axiom by hypothesis, s = 0. Hence K satisfies the uniqueness axiom.

Now, it suffices to show that K satisfies the gluing axiom. Let {Ui} be an open cover of U , and suppose
we have elements si ∈ K (Ui) for each i such that si|Ui∩Uj = sj |Ui∩Uj for each i, j. Now, since F satisfies
the gluing axiom, there exists s ∈ F (U) such that s|Ui = si for each i. Therefore, it suffices to show that
s ∈ K (U). For this, consider φU (s). Yet notice that {Ui} is an open cover of U such that φU (s)|Ui

=
φUi

(s|Ui
) = φUi

(si) = 0 for each i, so by the uniqueness axiom for G , φU (s) = 0. Hence s ∈ K (U).
Therefore, K also satisfies the gluing axiom, and we are done.

Definition 2.16 (Kernel, Cokernel, Image). Let φ : F → G be a morphism of sheaves. Then, the kernel
of φ, denoted kerφ, is simply the presheaf kernel of φ. However, the cokernel of φ, denoted cokerφ, is the
sheafification of the presheaf cokernel of φ, and the image of φ, denoted imφ, is the sheafification of the
presheaf image of φ. Notice that the latter two must be sheafified to ensure they are sheaves.

Definition 2.17 (Subsheaf). A subsheaf of a sheaf F is a sheaf F ′ such that F ′(U) is a subgroup (resp.
subring, subset) of F (U) and, similarly, the restriction maps of F ′ are restrictions of the restriction maps
of F . In particular, this implies that F ′

x is a subgroup (resp. subring, subset) of Fx for all x ∈ X.

Notice if φ : F → G is a morphism of sheaves, then kerφ is a subsheaf of F and imφ is a subsheaf of G .

Definition 2.18 (Injectivity and Surjectivity). A morphism of sheaves F → G is injective if kerφ = 0.
Thus φ is injective if and only if φU is injective for each open set U ⊆ X. On the other hand, a morphism
F → G is surjective if the natural map* ψ : imφ → G is an isomorphism, but this does not necessarily
imply that φU is surjective for each U .

*If it is not clear what this natural map is, see the proof of part (2) of Proposition 2.25, where it is explicitly
constructed for the purpose of exposition.

Definition 2.19 (Exact Sequence of Sheaves). A sequence · · · → F i−1 φi−1

→ F i φ
i

→ F i+1 → · · · of sheaves

and morphisms is exact if at each stage kerφi = imφi−1. For example, 0 → F
φ→ G is exact if and only if

φ is injective, and F
φ→ G → 0 is exact if and only if φ is surjective.

Definition 2.20 (Quotient Sheaf). Let F ′ be a subsheaf of a sheaf F . The quotient sheaf F/F ′ is the
sheafification of the presheaf U → F (U)/F ′(U). Notice that (F/F ′)x = Fx/F ′

x for any x ∈ X.

Definition 2.21 (Direct Image, Inverse Image). Let f : X → Y be a continuous map of topological spaces.

(1) For any sheaf F on X, we define the direct image or pushforward sheaf f∗F on Y by (f∗F )(V ) =
F (f−1(V )) for any open set V ⊆ Y .

(2) For any sheaf G on Y , we define the inverse image or pullback sheaf f−1(G ) onX to be the sheafification
of the presheaf U 7→ limV⊇f(U) G (V ), where U is any open set in X, and the limit is taken over all
open sets V of Y containing f(U).

Of course, if f is an open map (that is, the image of an open set is open), then computing (2) is easy;
however, this is not in general the case for arbitrary continuous maps.

Definition 2.22 (Restriction). Suppose Z ⊆ X. Then, if ι : Z ↪→ X is the inclusion map, and F is a sheaf
on X, ι−1F is called the restriction of F to Z and denoted F |Z . Notice that (F |Z)x = Fx for any x ∈ Z.

Definition 2.23 (Direct Sum). If F and G are sheaves on X, then the presheaf U 7→ F (U) ⊕ G (U) is a
sheaf, which we call the direct sum of F and G .
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Definition 2.24 (Sheaf Hom). If F and G are sheaves of abelian groups on X, then for any open set
U ⊆ X, the set Hom(F |U ,G |U ) has the natural structure of an abelian group. Hence U 7→ Hom(F |U ,G |U )
is a presheaf, and indeed a sheaf, called the sheaf of local morphisms of F into G or “sheaf hom” and denoted
H om(F ,G ).

The remainder of this section is mainly composed of solutions to exercises from Hartshorne, and lists some
useful conditions and propositions. These are mainly either technical criteria which make calculations sim-
pler, or sanity checks that properties which we are familiar with hold in the setting of sheaves as well.

First, we begin by discussing stalks, which make computations of all sorts significantly easier:

Proposition 2.25 (Stalks, Kernels and Images).

1. For any morphism of sheaves φ : F → G of X, (kerφ)x = ker(φx) and (imφ)x = im(φx).

2. φ is injective (resp. surjective) if and only if the induced map on the stalks φx is injective (resp.
surjective) for all x ∈ X.

3. A sequence · · · → F i−1 φi−1

→ F i φ
i

→ F i+1 → · · · of sheaves is exact if and only if for each x ∈ X the
corresponding sequence of stalks is exact as a sequence of abelian groups.

Proof.
(1): Choose a point x ∈ X and an element sx ∈ (kerφ)x. Choose an pair ⟨U, s⟩ representing sx. Then
φU (s) = 0, so in particular φU (s)x = 0 ∈ Gx. Then, by the following commutative diagram,

F (U) G (U)

Fx Gx

φU

φx

we see that sx ∈ Fx is mapped to 0, whence sx ∈ ker(φx). Hence (kerφ)x ⊆ ker(φx). On the other hand,
choose an element tx ∈ ker(φx). Choose a pair ⟨V, t⟩ representing tx. Then φV (t) = u, where ux = 0 ∈ Gx.
Yet then there must exist some neighborhood W ⊆ V of x such that u|W = 0, whence φW (t|W ) = u|W = 0.
Hence (t|W )x ∈ (kerφW )x, whence tx ∈ (kerφ)x. Therefore (kerφ)x ⊇ ker(φ)x, so we have equality.

Now choose a point x ∈ X and an element sx ∈ (imφ)x. Choose a pair ⟨U, s⟩ representing sx. Then there
exists some t ∈ F (U) such that φU (t) = s, so in particular φU (t)x = sx. But then, using the commutative
diagram above, this implies φ(tx) = sx so sx ∈ im(φx). Hence (imφ)x ⊆ im(φx). On the other hand, choose
an element sx ∈ im(φx). Then there exists tx ∈ Fx with φx(tx) = sx. Choose a pair ⟨U, t⟩ representing tx.
Then φU (t) satisfies φU (t)x = φx(tx) = sx using the commutative diagram above. Hence sx ∈ (imφ)x, so
(imφ)x ⊇ im(φx), and we have equality.

(2): Suppose φ is injective. Then ker(φx) = (kerφ)x = 0x = 0 for each x ∈ X, so each induced stalk map is
injective. Conversely, suppose that s ∈ kerφU . Then sx ∈ kerφx for each x ∈ U , so sx = 0 for each x ∈ U .
But then by Lemma 2.9, s = 0. Hence kerφU = 0 for each open U ⊆ X, so φ is injective.

Suppose φ is surjective. Then im(φx) = (imφ)x = Gx for each x ∈ X, so each induced stalk map is surjective.
On the other hand, suppose that φ : F → G is a morphism of sheaves such that φx is surjective for each
x ∈ X. Now, let I denote the presheaf image of φ. Then, there are natural morphisms φ′ : F → I and
ι : I → G such that the following diagram commutes:

F I G
φ′

φ

ι
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But then, by the universal property of sheafification, ι : I → G factors through imφ → G . Hence we have
the following commutative diagram:

F I G

imφ

φ′

φ

θ◦φ′

ι

θ
ψ

The goal is to demonstrate that ψ is an isomorphism, since then by definition φ is surjective. Yet notice
that (imφ)x = im(φx) ≃ Gx along ψx by assumption, so ψ is an isomorphism on stalks and therefore an
isomorphism by Proposition 2.12. Therefore imφ ≃ G along the natural map ψ, whence φ is surjective.

(3): The sequence · · · → F i−1 φ
i−1

→ F i φ
i

→ F i+1 → · · · of sheaves is exact if and only if imφi−1 = kerφi for
each i. Yet, by Lemma 2.9, this happens iff (imφ−1)x = (kerφi)x for each x and each i. By (1), this happens

iff imφi−1
x = kerφix for each x and each i. Yet this means precisely that · · · → F i−1

x

φi−1
x→ F i

x

φi
x→ F i+1

x → · · ·
is exact for each x.

Corollary 2.25.1 (A Sanity Check). A morphism of sheaves is an isomorphism if and only if it is injective
and surjective.

Proof. This immediately follows from Proposition 2.25 and Proposition 2.12.

Next, let us discuss the following criterion for surjectivity:

Proposition 2.26 (Surjectivity Criterion). Let φ : F → G be a morphism of sheaves on X. Then φ is
surjective if and only if the following condition holds: for every open set U ⊆ X, and for every s ∈ G (U),
there is a covering {Ui} of U , and there are elements ti ∈ F (Ui), such that φ(ti) = s|Ui

for all i.

Proof. Let φ : F → G be a morphism of sheaves on X. Then, if φ is surjective, φx is surjective for all x ∈ X
(by Proposition 2.25). Yet this means precisely that, for any open set U ⊆ X, any point x ∈ U , and any
s ∈ G (U), there exist ⟨V (x), t(x)⟩ ∈ Fx with t(x) ∈ F (V (x)) and V (x) an open neighborhood of x such
that φV (x)(t(x))x = sx. By shrinking V (x) if necessary, we may even choose ⟨V (x), t(x)⟩ ∈ Fx to be such
that φV (x)(t(x)) = s|U(x). Yet the collection {V (x)}x∈U covers U and satisfies the condition.

On the other hand, suppose that the condition is satisfied. To show that φ is surjective, it suffices to show
that φx is surjective for an arbitrary x ∈ X. Now, choose an arbitrary element sx ∈ Gx with representative
⟨U, s⟩. Now, by assumption, there exists an open covering {Ui} of U and there are elements ti ∈ F (Ui) such
that φ(ti) = s|Ui for all i. Now, x lies in Ui for some i, and φ(ti) = s|Ui implies that φx((ti)x) = φ(ti)x = sx,
so φx is indeed surjective, and we are done.

Let us also illustrate that what one might expect (that φ is surjective if and only if φU is surjective for each
open set U ⊆ X), is actually false.

Proposition 2.27 (Surjectivity Counterexample). There exists a morphism of sheaves φ : F → G of X
such that (i) φ is surjective (ii) φU is not surjective for some open U ⊆ X.

Proof. Examples come from this StackExchange post. First, we begin with a classical example from complex
analysis. Let X = C\{0} be the punctured complex plane, F the sheaf of holomorphic functions, and G the
sheaf of nowhere-zero holomorphic functions. Let φ : F → G send any holomorphic function f to exp(f).
Then, at stalks, φ is surjective. This follows because we can take the logarithm of any nonvanishing function
on any open disk not containing 0; in other words, we can take logarithms on nonvanishing functions on
sufficiently small open sets. However, we cannot take logarithms on all open sets; for example, φX is not
surjective since there is no holomorphic function f : X → C such that exp f(z) = z for all non-zero z (recall
that the logarithm cannot be defined on the punctured complex plane).

This example is extremely helpful and offers great intuition if one is familiar with complex analysis. However,
if one is not familiar with complex analysis, or wants a counterexample with minimal effort, consider the
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following. Let X = R. Define F to be the constant sheaf Z; that is, F (U) = Z for any open set U ⊆ X
and the restriction maps are just the identity. Similarly, define G as follows: G (U) = Z|{0,1}∩U | (again, the
restriction maps are obvious). Then, using the natural map Z → Zk given by 1 7→ (1, . . . , 1), we define a
morphism φ : F → G . φx is either an isomorphism Z → Z (if x = 0, 1) or the trivial surjection Z → 0
(otherwise); in either case, φx is surjective so φ is surjective. However, φX : Z → Z2 is not surjective.

Proposition 2.28 (Isomorphism Theorems). If φ : F → G is a morphism of sheaves, then imφ ≃ F/ kerφ
and cokerφ ≃ G / imφ.

Proof. Consider the natural morphism from the presheaf U 7→ F (U)/ kerφU to the presheaf U 7→ imφU .
Compose this with the sheafification map from the presheaf image to the image sheaf imφ, to get a map
from the presheaf U 7→ F (U)/ kerφU to the image sheaf. Then, by the universal property of sheafification,
this gives a map F/ kerφ→ imφ. Since sheafification does not change stalks, we easily check that this map
is an isomorphism on stalks and therefore an isomorphism by Proposition 2.12.

The second fact is proven identically and is thereby left as an exercise to the reader.

Next, we will discuss exact sequences of sheaves.

Proposition 2.29 (Short Exact Sequences of Sheaves). Let F ′ be a subsheaf of a sheaf F . Then the natural
map F → F/F ′ is surjective with kernel F ′. That is, just like in the case of abelian groups, there is an
exact sequence 0 → F ′ → F → F/F ′ → 0.

Just like in the case of abelian groups, the converse is also true: if 0 → F ′ → F → F ′′ → 0 is an exact
sequence, show that F ′ is isomorphic to a subsheaf of F , and that F ′′ is isomorphic to the quotient of F
by this subsheaf.

Proof. Let F ′ be a subsheaf of F . Then the natural map F → F/F ′ is given by composing the nat-
ural surjection F (U) ↠ F (U)/F ′(U) with the sheafification map θU : F (U)/F ′(U) → (F/F ′)(U).
Similarly, there is a natural map F ′ ↪→ F since F ′ is a subsheaf of F . Hence we have a sequence
0 → F ′ → F → F/F ′ → 0; it suffices to check that this sequence is exact. Now, recall that be-
cause the sheafification map is an isomorphism on stalks, (F/F ′)x ≃ Fx/F ′

x for any x ∈ X. But then
0 → F ′

x → Fx → Fx/F ′
x → 0 is obviously exact, so by Proposition 2.25, so is 0 → F ′ → F → F/F ′ → 0.

This implies, in particular, that F → F/F ′ is surjective and has kernel F ′.

On the other hand, suppose 0 → F ′ φ→ F
ψ→ F ′′ → 0. Then, φ : F ′ → F is injective, so F ′ ≃ F ′/0 ≃ imφ

(by, say Proposition 2.28), which is a subsheaf of F . Then, by exactness, ψ is surjective; that is, imψ ≃ F ′′.
Hence by Proposition 2.28, F ′′ ≃ F/ kerψ. But by exactness kerψ = imφ, so F ′′ ≃ F/ imφ, which is
exactly what we are asked to show. Therefore we are done.

Theorem 2.30 (Exactness of Evaluation and Flasque Sheaves).

1. Suppose that 0 → F ′ → F → F ′′ is an exact sequence of sheaves of abelian groups on X. Then, for
any open U ⊆ X, 0 → F ′(U) → F (U) → F ′′(U) is exact; in other words, evaluation at U is a left-
exact functor. In general, because not all surjective maps have surjective component maps, evaluation
at U is not an exact functor.

2. Suppose that F is a sheaf such that any restriction map is surjective. Then F is called flasque. If F ′

is flasque, and 0 → F ′ → F → F ′′ → 0 is an exact sequence, then for any open sest U ⊆ X, the
sequence 0 → F ′(U) → F (U) → F ′′(U) → 0 of abelian groups is also exact.

3. If 0 → F ′ → F → F ′′ → 0 is an exact sequence of sheaves, and if F ′ and F are flasque, then F ′′ is
flasque.

Proof.
(1): Firstly, notice that exactness at F (U) follows immediately, because exactness at F implies that F ′ → F
is injective which implies that F ′(U) → F (U) is injective for each open set U ⊆ X. Therefore, it suffices
to show exactness at F ′(U). Let φ denote the map F ′ → F and ψ denote the map F → F ′′. Now choose
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s ∈ F ′(U). Then we have (ϕU (ψU (s)))x = ϕx(ψx(sx)) = 0 (the last equality follows from the exactness of
taking stalks, see Proposition 2.25). Therefore φ(s) ∈ kerψU , so imφU ⊆ kerψU .

On the other hand, take s ∈ kerψU . Let x be a point in U . Since taking stalks in exact, the sx ∈ kerψx
lies in the image of imφx. That is, there exists tx ∈ F ′

x such that sx = φx(tx). Now, let tx be represented
by ⟨V (x), t(x)⟩. Shrinking V (x) if neecssary, we may suppose that φV (x)(t(x)) = s|V (x). Now, I claim that
we may glue together the t(x) to a section t ∈ F ′(U). For this, first notice that the collection {V (x)}x∈U
covers U . Secondly, notice that if x, y ∈ U , then

φV (x)∩V (y)(t(x)|V (x)∩V (y)) = s|V (x)∩V (y) = φV (x)∩V (y)(t(y)|V (x)∩V (y))

which by injectivity of φ implies that t(x)|V (x)∩V (y) = t(y)|V (x)∩V (y). Hence the sections are compatible, so
we may indeed glue them to a section t ∈ F ′(U). Then it is easy to check that φU (t) = s (since we have
equality on the cover {V (x)}x∈U and may apply uniqueness). Hence kerψU ⊆ imφU , so we have equality.

(2): Take an open set U ⊆ X. By part (1), it suffices to show that F (U) → F ′′(U) is surjective. Let
s ∈ F ′′(U). Since F → F ′′ is surjective, by Proposition 2.26, there exists an open cover {Ui}i∈I of U
and sections ti ∈ F (Ui) with ti 7→ s|Ui

. We will use Zorn’s Lemma to find the “biggest possible” section
obtained by gluing the ti together, and show that in fact this section lies in F (U) and maps to s.

Let S be the set of pairs (J, z), where J is a subset of the index set I, and z ∈ F (
⋃
j∈J Uj) satisfies

z 7→ s|⋃
j∈J Uj

. Place the natural partial ordering on S; (J, z) ≤ (J ′, z′) if J ⊆ J ′ and z′ restricts to z. The
set S is clearly nonempty, and any chain of S is bounded above by the sheaf axiom, so by Zorn’s Lemm S
has a maximal element (I ′, z). Now, we will show that I = I ′, so z ∈ F (U).

Suppose that I ′ ̸= I. Then, there exists i ∈ I \ I ′. Set V =
⋃
j∈I′ Uj and let ti ∈ F (Ui) be the ele-

ment described earlier. Now, define x = z|V ∩Ui
− ti|V ∩Ui

. Notice that x 7→ 0 ∈ F ′′(V ∩ Ui), so there exists
vi ∈ F ′(V ∩Ui) mapping to x. Since F ′ is flasque, we may lift vi to wi ∈ F ′(Ui) and define t′i = ti+wi. Then
z, t′i are compatible sections and glue to z′ ∈ F (V ∪ Ui). Clearly z′ 7→ s|V ∪Ui

. Therefore, (I, z) < (I ′, z′).
Since I ′ was chosen to be maximal, this is a contradiction, so the assumption I ̸= I ′ was wrong.

Hence z ∈ F (U) and by construction of S, z 7→ s|U = s, as desired. Therefore we are done.

(3): This is simple. Suppose V ⊆ U . Then, we have a commutative diagram:

0 F ′(U) F (U) F ′′(U) 0

0 F ′(V ) F (V ) F ′′(V ) 0

Since F ′ is flasque, F (V ) → F ′′(V ) is surjective by (2). Since F is flasque, F (U) → F (V ) is surjective
by definition. Therefore, the composition F (U) → F (V ) → F ′′(V ) is surjective, so by commutativity the
composition F (U) → F ′′(U) → F ′′(V ) must also be surjective. But then, in particular, F ′′(U) → F ′′(V )
is surjective, so F ′′ is also flasque. In particular, the image of any flasque sheaf is flasque.

Finally, we will conclude with a discussion of ways to create sheaves from incomplete data via either extending
or gluing. These techniques can (and will) be extremely helpful in simplifying later definitions.

Theorem 2.31 (Extending Sheaves on a Base). Suppose that X is a topological space, and B = {Bi} is
a base for the topology on X. Then suppose we have an “incomplete sheaf”, called a sheaf on the base
B, which assigns to each Bi an abelian group F (Bi) and to each inclusion Bi ⊆ Bj a restriction map
resBj ,Bi

: F (Bj) → F (Bi) such that if Bi ⊆ Bj ⊆ Bk, resBk,Bi
= resBj ,Bi

◦ resBk◦Bj
.

Suppose further that F satisfies the following axioms:

(1) If B ∈ B has an open cover {Bj} ⊆ B and s ∈ F (B) is such that f |Bj
= 0 for each j, then s = 0.
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(2) If B ∈ B has an open cover {Bj} ⊆ B, and we have sj ∈ F (Bj) such that sj |Bl
= sk|Bl

for any
Bl ⊆ Bj ∩Bk, there exists s ∈ F (B) such that s|Bj = sj for each j.

Then there is a sheaf F , unique up to unique isomorphism, extending F (that is, with isomorphisms F (Bi) ≃
F (Bi) agreeing with the restriction maps of F ).

Proof. The construction offered here is from Vakil’s Foundations of Algebraic Geometry, 2.5. The key is to
define F as the sheaf of “compatible germs of F”. Namely, define the stalk of a sheaf on the base F at x ∈ X
as Fx = lim−→F (Bi), where the direct limit is taken over all Bi containing x. One may also consider the explicit
construction using pairs ⟨Bi, s⟩ analogous to the explicit construction for stalks of sheaves (see Definition 2.7).

Define F as follows:

F (U) := {(fx ∈ Fx)x∈U | for all x ∈ U , there is B ∈ B with x ∈ B ⊆ U , s ∈ F (B), sq = fq for all q ∈ B}

Also give F the natural restriction maps, and notice that F (U) has a natural abelian group structure.
Therefore F is a presheaf. To see that it is a sheaf is similarly simple. Finally, one may verify that the
natural map F (Bi) → F (Bi) given by sending s ∈ F (Bi) to (sx ∈ Fx)x∈Bi

is an isomorphism.

Theorem 2.32 (Extending Morphisms on a Base). Suppose X is a topological space, and B = {Bi} is a
base for the topology on X. Then a morphism φ : F → G of sheaves on the base B is a collection of maps
φBi : F (Bi) → G(Bi) such that, for any inclusion Bi ⊆ Bj, the following diagram commutes:

F (Bi) G(Bi)

F (Bj) G(Bj)

φBi

resBi,Bj
resBi,Bj

φBi

Recall from the previous theorem that F and G induce (unique up to unique isomorphism) sheaves F and G
extending F and G. Similarly, φ induces a unique morphism of sheaves F → G extending φ.

Proof. The proof follows from applying the definition of the extended sheaf in Theorem 2.31.

Theorem 2.33 (Gluing Sheaves). Let X be a topological space with open cover {Ui}. Suppose that we are
given for each i a sheaf Fi on Ui, and for each i, j an isomorphism φij : Fi|Ui∩Uj

∼→ Fj |Ui∩Uj
such that

(1) for each i, φii = id, and (2) for each i, j, k, φij = φjk ◦ φij on Ui ∩ Uj ∩ Uk. Then there exists a unique

sheaf F on X, together with isomorphisms ψi : F |Ui

∼→ Fi such that for each i, j, ψj = φij ◦ψi on Ui ∩Uj.
We say that F is obtained by gluing the sheaves Fi along the isomorphisms φij.

Proof. This follows from Theorem 2.31. To see why, let {Ui} be an open cover of X and let B be the
collection of all open sets contained in one of the Ui. Then it is easy to see that B is a base for the topology
of X. Furthermore, the data provided allows us to define a (unique up to isomorphism) sheaf F on the base
B, which by Theorem 2.31 we may uniquely extend to get the desired sheaf F on X.

Theorem 2.34 (Gluing Morphisms of Sheaves). Let X be a topological space with open cover {Ui}. Let F
and G be sheaves on X. Suppose that we are given, for each i, a morphism φi : F |Ui

→ G |Ui
, and suppose

that furthermore these morphisms are compatible in the sense for any Ui, Uj, the restriction φi|Ui∩Uj
is

isomorphic to the restriction φj |Ui∩Uj
. Then there exists a unique morphism φ : F → G together with

isomorphisms φ|Ui

∼→ φi. We say that φ is obtained by gluing the morphisms φi.

Proof. As the above theorem follows from Theorem 2.31, this follows from Theorem 2.32.

2.2 Ringed and Locally Ringed Spaces

Definition 2.35 (Ringed Space). A ringed space is a pair (X,OX) consisting of a topological space X and a
sheaf of rings OX on X. X is called the underlying space of the ringed space, and OX is called the structure
sheaf; however, by abuse of notation, we obtain denote such a ringed space just by X. To make sure this
abuse of notation does not cause confusion, we often denote the underlying space of a ringed space (X,OX)
(which, again, we sometimes denote by just X) by sp(X).
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Definition 2.36 (Morphism of Ringed Spaces). A morphism of ringed spaces from (X,OX) to (Y,OY ) is
a pair (f, f#) of a continuous map f : X → Y and a map f# : OY → f∗OX . By abuse of notation, we
sometimes denote the pair (f, f#) by just f , but it is not determined by f .

Definition 2.37 (Locally Ringed Space). A locally ringed space is a ringed space such that the stalk OX,x

is a local ring for each x ∈ X.

Definition 2.38 (Local Ring Homomorphism). If (A,mA) and (B,mB) are local rings, then a homomorphism
φ : A→ B is called a local homomorphism if φ−1(mB) = mA.

Definition 2.39 (Morphism of Locally Ringed Spaces). A morphism of locally ringed spaces is a morphism
of ringed spaces (f, f#) : (X,OX) → (Y,OY ) such that for each point x ∈ X, the induced map of local rings
f#x : OY,f(x) → OX,x is a local ring homomorphism.

In more detail, notice that the morphism of sheaves f# : OY → f∗OX induces a homomorphism of
rings OY (V ) → OX(f−1(V )) for every point set V in Y . As V ranges over all neighborhoods of f(x),
f−1(V ) ranges over a subset of the neighborhoods of x. Hence we obtain a map OY,f(x) = lim−→V

OY (V ) →
lim−→V

OX(f−1(V )) = OX,x, which is the described “induced map”.

Definition 2.40 (SpecA). Let A be a commutative ring. Then SpecA, the spectrum of A, is the set of all
prime ideals of A. For any ideal a ◁ A, V (a) is defined to be the set of all prime ideals which contain a.
Since V (a) ∪ V (b) = V (ab),

⋂
V (ai) = V (

∑
ai), V (A) = ∅, and V (0) = SpecA, subsets of SpecA of the

form V (a) satisfy the axioms of closed sets for a topological space. Therefore, we may place a topology on
SpecA by letting sets of the form V (a) be the closed sets.

Definition 2.41 (Basic Affine Open). If A is a commutative ring, and f ∈ A, then D(f) denotes the open
complement of V ((f)), and is called a basic affine open.

Proposition 2.42. If A is a commutative ring, then {D(f)}f∈A is a base for the topology of SpecA.

Proof. Suppose U is an open neighborhood of a point p in SpecA. Then U = SpecA \ V (a) for some ideal
a ◁ A. Then, p ̸∈ V (a) implies p ̸⊇ a, so there is an f ∈ a such that f ̸∈ p. But then p ∈ D(f) and
D(f) ∩ V (a) = ∅, whence D(f) ⊆ U , as desired.

Definition 2.43 (Spectrum of a Ring). Let A be a commutative ring. Then the spectrum of A is the ringed
space (SpecA,O), where the structure sheaf O is defined as follows:

1. For an open set U ⊆ SpecA, define O(U) to be the set of functions s : U →
∐

p∈U Ap such that
s(p) ∈ Ap for each p and such that s is locally a quotient of elements of A. Precisely, we require that
for each p ∈ U , there is a neighborhood V of p contained in U and elements a, f ∈ A such that for
each q ∈ V , f ̸∈ q and s(q) = a/f in Aq.

2. The restriction map O(U) → O(V ) is the natural restriction of functions.

It is clear that O is a presheaf and indeed a sheaf, so (SpecA,O) is indeed a ringed space.

Proposition 2.44 (Stalks and Sections of Spectra). Let A be a ring and (SpecA,O) its spectrum.

(a) For any p ∈ SpecA, the stalk Op of the sheaf O is isomorphic to the local ring Ap. In particular,
(SpecA,O) is a locally ringed space.

(b) For any element f ∈ A, the ring O(D(f)) is isomorphic to the localized ring Af . In particular, the
ring of global sections O(SpecA) ≃ A.

Proof.
(a): Define a map φ : Op → Ap by sending any local section s in a neighborhood of p to its value s(p) ∈ Ap.
Plainly, this is a homomorphism. To see that it is surjective, choose an element a/f = Ap. Then D(f) is an
open neighborhood of p, and the constant function a/f is a section of O(D(f)). Yet ⟨O(D(f)), a/f)⟩ ∈ Op

is sent to a/f by φ. Therefore, it suffices to show that φ is injective.
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Let ⟨U, s⟩ and ⟨V, t⟩ be two elements of Op such that s(p) = t(p) in Ap (that is, they have the same image
under φ). Then, there exists a neighborhood W1 ⊆ U of p such that s = a/f , and similarly there exists a
neighborhood W2 ⊆ V of p such that t = b/g, where f, g ̸∈ p. Now let W =W1 ∩W2, so that in W , s = a/f
and t = b/g. Since these two elements have the same image in Ap, it follows that there is an h ̸∈ p such
that h(ga − fb) = 0. Therefore a/f = b/g in every local ring Aq such that f, g, h ̸∈ q. But the set of such
q is the open set D(f) ∩D(g) ∩D(h), which is a neighborhood of p. Hence ⟨U, s⟩ and ⟨V, t⟩ are equal in a
neighborhood of p, so they are equal in Op and φ is injective.

(b): For each p not containing f , there is a natural map ιp : Af → Ap. Let ψ : Af → O(D(f)) be the
morphism given by sending a/fn to the section s ∈ O(D(f)) which maps p to ιp(a/f

n). Proving that this
is injective and surjective is laborious but straightforward, so it either left as an exercise to the reader or
can be read on pg. 70-71 of Hartshorne. Finally, the particular statement follows from letting f = 1, since
D(1) = Spec(A).

Proposition 2.45 (Morphisms of Ring Spectra). Let A be a ring and (SpecA,O) its spectrum. Then if
φ : A → B is a homomorphism of rings, φ induces a natural morphism of locally ringed spaces (f, f#) :
(SpecB,OSpecB) → (SpecA,OSpecA). Furthermore, if A and B are rings, then any morphism of locally
ringed spaces from SpecB to SpecB is induced by a homomorphism of rings φ : A→ B.

Proof. Suppose that φ : A → B is a homomorphism of rings. Then define a map f : SpecB → SpecA by
f(p) = φ−1(p). This is continuous, because the preimage of a closed set V (a) is the closed set V (φ(a)). Now,
for any p ∈ SpecB, φ induces a local ring homomorphism φp : Aφ−1(p) → Bp. Therefore, we may define

f# : OSpecA(V ) → OSpecB(f
−1(V )) by sending a section s by composing f on the right and the disjoint

union of the φp on the left. This is a morphism of ringed spaces, and furthermore a morphism of locally
ringed spaces because the induced maps on the stalks are just the local ring homomorphisms φp.

Conversely, suppose that we are given a morphism of locally ringed spaces (f, f#) from SpecB to SpecA.
Then by taking global sections, f# induces a homomorphism of rings φ : A → B. For any p ∈ SpecB, we
have an induced local homomorphism Af(p) → Bp on the stalks, such that the below diagram commutes:

A B

Af(p) Bp

φ

f#
p

Since f# is a local homomorphism, it follows that φ−1(p) = f(p), so f coincides with the map SpecB →
SpecA induced by φ. It is immediate that f# is also induced by φ, so we are done.

Lemma 2.46 (Basic Affine Opens are Spectra). Suppose that A is a commutative ring with spectra SpecA
and f ∈ A is an element. Then D(f) ≃ SpecAf as locally ringed spaces.

Proof. Firstly, notice that D(f) = {p ⊆ A | f ̸∈ p} is in a natural one-to-one correspondence with SpecAf =
{p ∈ A | p ∩ f = ∅}, and that furthermore this correspondence is continuous in both directions (because it
is order-preserving). Therefore D(f) ∼= SpecAf as topological spaces. Yet furthermore, by Proposition 2.44,
OX(D(f)) = Af , so OX |D(f) ≃ OAf

. Hence the result follows.

Definition 2.47 (Evaluation of a Section at a Point). Suppose that (X,OX) is a locally ringed space, and
that x ∈ X is a point. Then, for any open set U containing x, we have a ring map OX(U) → OX,x ↠ k(x),
the residue field of OX,x. The image of s ∈ OX is denoted s(x) and is called the value of s at x.

Example 2.48 (Evaluation is Evaluation of Functions). For manifolds and algebraic sets, this recovers the
usual notion of the value of a function at a point x. Check this for yourself with an example.

2.3 Schemes and Morphisms

Definition 2.49 (Affine Scheme). An affine scheme is a locally ringed space (X,OX) which is isomorphic
(as a locally ringed space) to (SpecA,OSpecA) for some commutative ring A.
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Definition 2.50 (Scheme). A scheme is a locally ringed space (X,OX) in which every point has an open
neighborhood U such that the topological space U together with the restricted sheaf OX |U is an affine
scheme. A (iso)morphism of schemes is a(n) (iso)morphism of locally ringed spaces between two schemes.

Following are a few basic results which we will use later. Firstly, we know that any scheme is covered by
open affine schemes. However, something stronger is in fact true:

Lemma 2.51 (Affine Opens Form a Base). Suppose that (X,OX) is a scheme, x ∈ X is a point, and U ⊆ X
is a neighborhood of x. Then there exists a neighborhood V ⊆ U of x such that (V,OX |V ) is an affine scheme.

Proof. Let V be an affine neighborhood of x, and suppose V ≃ SpecA. Now, V ∩ U is an open set in V –
indeed it is a neighborhood of x in U . Therefore, because the basic affine opens form a basis for the topology
(see Proposition 2.42), there exists some f ∈ A such that D(f) ⊆ V ∩ U is a neighborhood of x in V . Yet
D(f) is open in X as an open subset of the open subset V ⊆ X, and furthermore D(f) is affine, isomorphic
to SpecAf , by Lemma 2.46. Finally, x ∈ D(f) ⊆ U by construction, so we are done.

From this we may conclude that any open subset of a scheme is itself naturally a scheme.

Lemma 2.52 (Open Subscheme). Let (X,OX) be a scheme and U ⊆ X be an open subset. Then (U,OX |U )
is a scheme, called an open subscheme of X.

Definition 2.53 (Dimension and Codimension). The dimension of a scheme X, denoted dimX, is its
dimension as a topological space. If X is an irreducible closed subset of X, then the codimension of Z in X,
denoted codim(Z,X), is the supremum of integers n such that there exists a chain Z = Z0 ⊆ Z1 ⊆ · · · ⊆ Zn
of distinct closed irreducible subsets of X. If Y is any closed subset of X, we define

codim(Y,X) = inf
Z⊆Y

irreducible

codim(Z,X).

Finally, it can be helpful to remember the following fact:

Lemma 2.54. Suppose that (X,OX) is a scheme and U ⊆ X is a nonempty open set. Then OX(U) ̸= 0.

Proof. Choose a point x ∈ U . By Lemma 2.51, there exists a affine open V ⊆ U containing x. Suppose
V ≃ SpecA. Yet since V is nonempty, A must be nonzero, so OX(V ) ≃ A is nonzero. However, there is a
restriction map resU,V : OX(U) → OX(V ). Since OX(V ) is nonzero, 0 ̸= 1 in OX(V ); furthermore, since it is
a ring homomorphism, resU,V (1) = 1 and resU,V (0) = 0. Therefore 0 ̸= 1 ∈ OX(U), whence OX(U) ̸= 0.

Definition 2.55 (Types of Schemes). Let X be a scheme. Then,

(1) X is called connected if sp(X) is connected.

(2) X is called irreducible if sp(X) is irreducible.

(3) X is called reduced if OX(U) is reduced for every open set U .

(4) X is called integral if OX(U) is an integral domain for every open set U .

Proposition 2.56 (Reduced iff Stalks are Reduced). A scheme X is reduced if and only if OX,x is reduced
for each x ∈ X.

Proof. Suppose that X is reduced; that is, the nilradical N (OX(U)) of OX(U) is zero for any open set
U ⊆ X. Now, choose a point x ∈ X, and take an open affine neighborhood U of x. Then U ≃ SpecA,
and x corresponds to some prime ideal p. Then, because localization commutes with radicals, N (OX,x) =
N (Ap) = N (A)p = 0p = 0. Therefore OX,x is also reduced for each x ∈ X.

Conversely, let N (OX,x) = 0 for all x ∈ X. For any open U ⊆ X, pick a section s ∈ OX(U) and assume
that sn = 0 for some n. Then, snx = 0 for all x ∈ U , so by assumption sx = 0 for all x ∈ U . Yet this implies
that s = 0 by Lemma 2.9. Hence OX(U) is a reduced ring, so indeed X is reduced.
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Now, obviously an affine scheme is integral if and only if it is both reduced and irreducible. As one might
expect, the same is true for general schemes. However, this is not trivial to prove, and requires a short
technical lemma (which is also a broadly useful fact).

Lemma 2.57. Let X be a scheme. Take a section f ∈ OX(U), and define Uf to be the subset of points
x ∈ U such that the stalks fx of x is not contained in the maximal ideal mx of the local ring Ox. Then Uf
is an open subset of U .

Proof. Since openness and the property of fx not being contained in the maximal ideal mx of Ox are both
local properties, we may assume that U = X. Furthermore, we may reduce to the affine case by taking an
open affine cover {Vi} of X. Therefore, assume that X is an affine scheme, isomorphic to SpecA. The goal
has been reduced to showing that if f ∈ A, then Uf is an open subset of U . For this, I claim that Uf = D(f).

Yet this is obvious, because p ∈ D(f) iff f ̸∈ p iff f
1 ̸∈ pp iff f ∈ Uf .

Notice the general strategy of reducing to the affine case, which is extremely useful.

Proposition 2.58. A scheme is integral if and only if it is both reduced and irreducible.

Proof. Suppose (X,OX) is an integral scheme. Then by definition it is reduced. Furthermore, if X is not
irreducible, then by Proposition 6.13, there exist two nonempty disjoint open subsets U1 and U2. But then
OX(U1⊔U2) = OX(U1)×OX(U2) is not an integral domain, since nonemptiness implies OX(U1),OX(U2) ̸= 0
(see Lemma 2.54). Hence by contraposition, integral implies irreducible.

Conversely, suppose that X is reduced and irreducible. Let U ⊆ X be an open subset, and suppose that
there are elements f, g ∈ OX(U) with fg = 0. Let Y = {x ∈ U | fx ∈ mx}, and let Z = {x ∈ U | gx ∈ mx}.
Then Y and Z are closed subsets of U by Lemma 2.57, and Y ∩ Z = U . But X is irreducible, so U is
irreducible (see Proposition 6.14), so one of Y or Z is equal to U , say Y = U . Then, given any open affine
subset V of U , D(f |V ) ⊆ V is empty. But this is equivalent to stating that f |V is nilpotent, which since X
is reduced implies that f |V = 0. Since open affine subsets cover U , by the uniqueness axiom this implies
f = 0. If Z = U , then similarly g = 0. In either case, fg = 0 implies f = 0 or g = 0, or OX(U) is an integral
domain and we are done.

Theorem 2.59. Let A be a ring and let (X,OX) be a scheme. Given a morphism f : X → SpecA, we have
an associated map on sheaves f# : OSpecA → f∗(OX). Taking global sections we obtain a homomorphism
A→ OX(X). Therefore, there is a natural map

α : Hom(X,SpecA) → Hom(A,OX(X))

where the first hom-set is taken in the category of schemes, and the second is taken in the category of rings.
α is a bijection.

Proof. Now, the affine case follows immediately from Proposition 2.45. Therefore, it suffices to reduce to
the affine case. For this, suppose that we have a ring map ϕ : A → OX(X). Let {Ui} be an affine cover of
X. Then, for each i, we have a ring map ϕi : A → OX(Ui) by composing with the restriction morphisms
OX(X) → OX(Ui). Then, by the affine case, we have an induced morphism of schemes β(ϕi) : Ui → SpecA.
By gluing these maps, we get a morphism β(ϕ) : X → SpecA. Hence we have a map β : Hom(A,OX(X)) →
Hom(X,SpecA); one may easily verify that this is the two-sided inverse of α, so α is bijective.

Lemma 2.60 (Gluing Lemma). Let {Xi} be a family of schemes. Suppose, for each i ̸= j, suppose that we
are given an open subset Uij ⊆ Xi (with the induced scheme structure). Suppose also for each i ̸= j we have
an isomorphism of schemes φij : Uij → Uji such that (1) for each i, j, φji = φ−1

ij , and (2) for each i, j, k,
φij(Uij ∩ Uik) = Uji ∩ Ujk, and φik = φjk ◦ φij on Uij ∩ Uik.

Then there is a scheme X, together with morphisms ψi : Xi → X for each i, such that (1) ψi is an
isomorphism of Xi onto an open scheme of X, (2) the ψi(Xi) cover X, (3) ψi(Uij) = ψi(Xi)∩ψj(Xj), and
(4) ψi = ψj ◦ φij on Uij. We say that X is obtained by gluing the schemes Xi along the isomorphisms φij.
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Corollary 2.60.1. We define the disjoint union of a family of schemes {Xi} by letting Uij and φij be empty
for all i, j, and gluing together the {Xi} along these empty isomorphisms. The result is denoted

∐
Xi.

Next, let’s investigate a way to check affineness. First, we’ll need two elementary preliminary lemmas:

Lemma 2.61 (Isomorphism Criterion). Let f : X → Y be a morphism, and suppose {Ui} is an open cover
of Y such that the restriction fi : f

−1(Ui) → Ui is an isomorphism for each i. Then f is an isomorphism.

Proof. Follows immediately from basic topology and the stalk criterion for isomorphisms (Prop 2.12).

Lemma 2.62 (Criterion for Basic Affine Open Coverings). Suppose that A is a ring. Then f1, . . . , fr
generate A if and only if the basic affine opens D(fi) = Spec(Afi) cover SpecA.

Proof. This is a matter of definition-shuffling.

∅ = V (A) = V (
∑
i∈I

(fi)) =
⋂
i∈I

V ((fi)) ⇔
⋂
i∈I

X \D(fi) =
⋂
i∈I

V ((fi)) = ∅ ⇔
⋃
i∈I

D(fi) = X.

Lemma 2.63 (Criterion for Affineness). A scheme X is affine if and only if there is a finite set of elements
f1, . . . , fr ∈ OX(X) such that Xfi is affine for each i, and f1, . . . , fr generate the unit ideal in OX(X).

Proof. Clearly, if X is affine, then we may take f = 1.

Conversely, suppose there are elements f1, . . . , fr ∈ A = OX(X) such that each open subset Xfi is affine
and f1, . . . , fr generate all of OX(X). Now, by Theorem 2.59, the identity map A → OX(X) induces a
morphism f : X → SpecA. I claim that f is an isomorphism. To prove this result, recall that since the fi
generate A, the basic affine opens D(fi) = Spec(Afi) cover SpecA (this is Lemma 2.62. Now, by definition,
the preimage of each open set D(fi) is Xfi . By assumption, Xfi is affine, isomrophic to SpecAi. Therefore,
we have restrictions fi : SpecAi → SpecAfi , where the SpecAfi cover SpecA. Hence by Lemma 2.61, to
show that f is an isomorphism, it suffices to show that the fi are isomorphisms. For this, it suffices to show
that the corresponding ring map (see Proposition 2.45) φ : Afi → Ai is an isomorphism.

Injectivity: Choose a
fn
i
∈ Afi such that φ( afn

i
) = 0. Then a

fn
i

also vanishes in the intersection Xfi ∩Xfj =

Spec(Ai)aj for each j. So for each j there is some nj such that f
nj

i a = 0. Then, if m = max{n1, . . . , nr},
fmi a vanishes on each set of a cover of SpecAfi , so f

m
i a = 0 ∈ Afi . Yet this implies that a = 0 ∈ Afi , so

a
fn
i
= 0 ∈ Afi as well. Therefore kerφ = 0 and φ is injective.

Surjectivity: Take a ∈ Ai. Then, for each j ̸= i, OX(Xfifj ) ≃ (Aj)fi so a|Xfifj
can be written as

aj

f
nj
i

for some aj ∈ Aj . That is, we have elements aj ∈ Aj whose restrictions to Xfifj is f
nj

i a. Now let

n = max{n1, . . . , nr}, and replace aj by ajf
n−nj

i , so that we have elements aj ∈ Aj whose restrictions to
Xfifj is fni a for each j.

Now, we want to glue together these elements to a global section of Xfi (that is, an element of Afi). However,
they might not necessarily agree on intersections, so we have to fix that. Consider the triple intersections
Xfifjfk = Spec(Aj)fifk = Spec(Ak)fifk ; here, we have aj − ak = fni a − fni a = 0, and so we can find some
integer mjk such that f

mjk

i (aj − ak) = 0. But then m = max1≤i<j≤rmjk satisfies fmi (aj − ak) = 0, so the
elements fmi aj agree on intersections and all restrict to fn+mi a. Hence we have a global section b whose
restriction to Xfi is fn+mi a and so b

fn+m
i

gets mapped to a by φi. Hence we have surjectivity.

2.4 Nike’s Trick and Types of Schemes

Following is an incredibly useful technique, which allows one to pass information from one affine cover to
another. It will help us prove whenever an open cover of affine subsets of a scheme has some property P ,
then every affine subset has that property (examples will follow after we develop the trick).

27



Lemma 2.64 (Nike’s Trick). Suppose that X is a scheme, and U1 = Spec(A1) and U2 = Spec(A2) are two
open affine subschemes of X. Then, there exists a base {Vi} for the topology of U1 ∩ U2 such that Vi is a
basic affine open in U1 and U2 for each i.

Proof. Take x ∈ U1 ∩ U2, and an open neighborhood W ⊆ U1 ∩ U2 of x. Then, since basic affine opens
form a base for the topology of U1, we can pick a basic affine open V1 = Spec(A1)a1 ⊆ W containing x.
Then, since basic affine opens also form a base for the topology of U2, we can pick a basic affine open
V2 = Spec(A2)a2 ⊆ V1 containing x. It suffices to show that V2 is still a basic affine open of U1.

Now, V2 is the non-vanishing locus for the global function a2 on U2, because since it is contained within V1,
it is also the non-vanishing locus of r2|V1

on V1. Since V1 = Spec(A1)a1 , we can write r2|V1
= a

an1
for some

a ∈ A1. Yet then V2 = Spec((A1)a1)a/rn1 = Spec(A1)a1a, which is a basic affine open of U1, as desired.

Now, we will transition to looking at some definitions. These provide the aforementioned examples of
properties which, if they hold for an open affine cover, hold for all affines.

Definition 2.65 ((Locally) of Finite Type). A morphism f : X → Y of schemes is said to be locally of
finite type if there exists a covering of Y by open affine subsets Vi = SpecBi such that for all i, f−1(Vi)
can be covered by open affine subsets Uij = SpecAij , where each Aij is a finitely-generated Bi-algebra. f is
furthermore said to be of finite type if we may choose each cover {Uij} of f−1(Vi) to be finite.

Proposition 2.66. A morphism f : X → Y of schemes is locally of finite type if and only if for every open
affine subset V = SpecB of Y , f−1(V ) can be covered by open affine subsets Uj = SpecAj, where each Aj
is a finitely generated B-algebra.

Proof. The direction “if” is trivial. For the other direction, suppose f : X → Y is locally of finite type.
Explicitly, there exists a covering of Y by open affine subsets Vi = SpecBi such that for each i, f−1(Vi)
is covered by affine opens Uij = SpecAij , where each Aij is a finitely-generated Bi-algebra. Now consider
any basic open affine Spec(Bi)b ⊆ Spec(Bi). Notice that f−1(Spec(Bi)b) is covered by Spec((Aij)b), and
plainly (Aij)b is a finitely-generated (Bi)b-algebra. Hence any basic affine open of Vi satisfies the same key
hypotheses as Vi, for each i. This is key to the application of Nike’s trick.

Now, take V = SpecB to be an open affine subset. By Nike’s trick, for each i, Spec(Bi) ∩ Spec(B) has an
open cover {Vij} such that Vij = SpecAij is basic affine in both Spec(Bi) and Spec(B). Notice that by our
reasoning in the above paragraph, f−1(Vij) is covered by the spectra of finitely-generated Aij-algebras. Yet
Aij = Spec(B)bij for some bij ∈ B, so any finitely-generated Aij-algebra is a finitely-generated B-algebra.
Yet notice that since the Vi cover Y , the V ∩ Vi cover V , so the Vij cover V . Hence the f−1(Vij) cover
f−1(V ), and since f−1(Vij) is covered by the spectra of finitely-generated B-alegbras, f−1(V ) is covered by
the spectra of finitely-generated B-algebras, and we are done.

Definition 2.67 (Quasicompact Morphism). A morphism f : X → Y of schemes is quasicompact if there
is a cover of Y by open affines Vi such that f−1(Vi) is quasicompact for each i.

Proposition 2.68. A morphism f : X → Y of schemes is quasicompact iff for every open affine subset
V ⊆ Y , f−1(V ) is quasicompact iff for every quasicompact subset V ⊆ Y , f−1(V ) is quasi-compact.

Proof. Since any affine scheme is quasicompact (see Proposition 6.28), the third condition implies the second
which implies the first. Therefore, assume the first condition; we will show that the third follows. Namely,
assume that there is a cover of Y by open affines Vi such that f−1(Vi) is quasicompact for each i.

Now fix i. Since f−1(Vi) is quasicompact, it is covered by finitely many affine opens Uij = Spec(Aij).
Then f−1((Vi)bi) is covered by the finitely many open subschemes Spec(Aij)bi , which are each quasicom-
pact. Hence f−1((Vi)bi) is quasicompact (see Proposition 6.27). In other words, the quasicompactness of
the preimage of Ui implies the quasicompactness of any basic affine open of Ui.

Now take V ⊆ Y quasicompact. Since V is covered by finitely many open affine subschemes, and the finite
union of quasicompact spaces is quasicompact, it suffices to consider the affine case V = SpecB. Now, V
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is covered by {V ∩ Vi}, as the Vi’s cover Y . Such overlaps are open in Vi and thus covered by basic affine
opens in Vi. Thus by quasi-compactness of V , there is a finite cover of V by open subschemes Uj ⊆ SpecB
that are basic affine open in some Vi and hence have quasicompact preimage. Since f−1(V ) is the union of
the finitely many quasicompact preimages f−1(Uj) it is also quasicompact.

Theorem 2.69. A morphism f : X → Y is of finite type iff it is locally of finite type and quasicompact.

Proof. Clearly if f is locally of finite type and quasicompact, then it is of finite type. Similarly, if f is of
finite type, then it is trivially locally of finite type. Hence it suffices to show that f is quasicompact if it is
of finite type. Yet this is easy: since f is of finite type, Y is covered by open affines {Vi} whose preimages
are covered by finitely many open affines {Uij}. Yet by Proposition 6.27 and Proposition 6.28, this implies
that each preimage f−1(Vi) is quasicompact, so by definition f is quasicompact.

Corollary 2.69.1. A morphism f : X → Y is of finite type if and only if for every open affine subset
V = SpecB of Y , f−1(V ) can be covered by finitely many open affine subsets Uj = SpecAj, where each Aj
is a finitely generated B-algebra.

Definition 2.70 (Finite Morphism). A morphism f : X → Y is a finite morphism if there exists a covering
of Y by open affine subsets Vi = SpecBi such that for each i, f−1(Vi) is affine, equal to SpecAi, where Ai
is a finite Bi-algebra.

The generalization of this definition to every open affine subset is a little bit more involved. In particular,
we need a few algebraic lemmas:

Lemma 2.71. Let A be a commutative ring. Suppose that a1, . . . , an ∈ A generate all of A. Then for any
positive integers m1, . . . ,mn, the set am1

1 , . . . , amn
n generates all of A.

Proof. The proof is geometric: a1, . . . , an generates all of A if and only if Spec(A)a1 , . . . ,Spec(A)an covers
Spec(A) (Lemma 2.62). But Spec(A)ai ⊆ Spec(A)ami

i
for each i, so Spec(A)am1

1
, . . . ,Spec(A)amn

n
covers

Spec(A). Hence am1
1 , . . . , amn

n generates all of A, as desired.

Lemma 2.72. Suppose that A is a B-module, and there exists a finite collection c1, . . . , cn generating B
such that Aci is a finite Bci-module for each i. Then A is a finite B-module.

Proof. Let di1, . . . , dini
generate Aci as a Bci-module. By clearing denominators, notice that we may assume

that di1, . . . , dini
∈ A. I claim that the finitely many dij (ranging over all i and j) generate A. To see why,

fix a ∈ A. Then for each i, we may write a =
∑
j bijdij for bij ∈ Bci . Since there are finitely many bij , there

exists some mi such that b′ij = cmi
i bij ∈ B for each j. Then cmi

i a =
∑
j b

′
ijdij where b

′
ij ∈ B for each j.

Now, by Lemma 2.71, there exist e1, . . . , en ∈ B such that e1c
m1
1 + · · ·+ enc

mn
1 = 1. But then,∑

i

∑
j

(eib
′
ij)dij =

∑
i

eic
mi
i a = e1c

m1
1 a+ · · ·+ enc

mn
1 a = (e1c

m1
1 + · · ·+ enc

mn
1 )a = a.

Hence an arbitrary a ∈ A is generated over B by the finitely many dij , so A is a finite B-module.

Proposition 2.73. A morphism f : X → Y is finite if and only if for every open affine subset V = SpecB
of Y , f−1(V ) is affine, equal to SpecA, where A is a finite B-algebra.

Proof. The direction “if” is trivial. For the other direction, suppose f : X → Y is finite. Explicitly, there
exists a covering of Y by open affine subsets Vi = SpecBi such that for each i, f−1(Vi) is affine, equal to
SpecAi where Ai is a finite Bi-algebra. Now, consider any basic open affine Spec(Bi)b ⊆ Spec(Bi). Notice
that f−1(Spec(Bi)b) = Spec(Ai)b, and plainly (Ai)b is a finite (Bi)b-module. Hence any basic affine open of
Vi satisfies the same key hypotheses as Vi, for each i. This is key to the application of Nike’s trick.

Now, take V = SpecB to be an open affine subset. By Nike’s trick, for each i, Spec(Bi) ∩ Spec(B) has an
open cover {Vij} such that Vij is basic affine in both Spec(Bi) and Spec(B). Notice that by our reasoning in
the above paragraph, f−1(Vij) is affine and its corresponding ring is a finite module over the corresponding
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ring of Vij . On the other hand, Vij = Spec(B)cij for some cij ∈ B (since it is basic affine in Spec(B)). In
summary, we have an open cover of V by Vij = Spec(B)cij such that f−1(Vij) is affine, equal to Spec(Aij)
where Aij is a finitely-generated (B)cij -module. Since V is affine, it is quasicompact, so we may assume
that this open cover is finite. That is, V is covered by V1, . . . , Vn where, for each i, Vi = Spec(B)ci for some
ci ∈ B and f−1(Vi) = Spec(Ai) where Ai is a finite (B)ci -module.

Now define U = f−1(V ) ⊆ X and let A equal the ring of global sections OU (U). By Proposition 2.59, there
is an induced map ϕ : B → A. Since Spec(B)c1 , . . . ,Spec(B)cn covers Spec(B), we have that c1, . . . , cn
generate all of B. Hence there exist b1, . . . , bn ∈ B such that b1c1 + · · · + bncn = 1. But then ϕ(b1)ϕ(c1) +
· · · + ϕ(bn)ϕ(cn) = ϕ(1) = 1 ∈ A, so ϕ(c1), . . . , ϕ(cn) generate all of A. Furthermore, Uϕ(ci) is affine as
it is equal to the preimage of Spec(B)ci , which is affine by the conclusion of the above paragraph. Hence
by Lemma 2.63, U is affine and equal to Spec(A). Finally, the fact that A is a finite B-module follows
immediately from Lemma 2.72 above.

Definition 2.74 (Locally Noetherian and Noetherian). A scheme X is called locally Noetherian if it can be
covered by open affine subsets SpecAi, where each Ai is a Noetherian ring. X is further called Noetherian
if it is locally Noetherian and quasicompact.

We’ll use Nike’s trick one last time, but again we need a few algebraic lemmas:

Lemma 2.75. Suppose that f1, . . . , fr are a finite number of elements in A which generate the unit ideal,
and Afi is Noetherian for each i. Then A is Noetherian.

Proof. First, we will show that if a is an ideal of A, and φi : A→ Afi is the natural map,

a =
⋂
i

φ−1
i (φ(a)Afi).

The inclusion ⊆ is obvious, so suppose that b ∈ A is contained in the intersection. Then, for each i, we can
write φi(b) =

ai
f
ni
i

for some ai ∈ A. By taking n = max{n1, . . . , nr} and replacing ai with aif
n−ni
i , we may

write φi(b) =
ai
fn
i

for some ai ∈ A for all i. Then, by definition of localization, we have fmi
i (fni b − ai) = 0

for each i. By taking m = max{m1, . . . ,mr}, we have fmi (fni b− ai) = 0 for all i. Thus fm+n
i b ∈ a for each

i. But since f1, . . . , fr generates all of A, fm+n
1 , . . . , fm+n

r generates all of A by Lemma 2.71. Hence there
exist some a1, . . . , ar ∈ A such that a1f

m+n
1 + · · ·+ arf

m+n
r = 1. Yet then

b = a1f
m+n
1 b+ · · ·+ arf

m+n
r b ∈ a.

Now that we have this result, the desired fact follows easily. Let a1 ⊆ a2 ⊆ · · · be an ascending chain
of ideals in A. Then, for each i, φi(a1)Afi ⊆ φi(a2)Afi ⊆ · · · , becomes stationary at some Ni since Afi
is Noetherian. Yet then the original chain becomes stationary at N = max{N1, . . . , Nr}. Therefore every
ascending chain of ideals becomes stationary in A, so A is indeed Noetherian.

Proposition 2.76. A scheme X is locally Noetherian if and only if, for every open affine subset U = SpecA,
A is a Noetherian ring. In particular, an affine scheme X = SpecA is a Noetherian scheme if and only if
the ring A is a Noetherian ring.

Proof. The “if” direction is trivial, and the “only if” direction is the usual use of Nike’s Lemma. That is,
assume that X is locally Noetherian; i.e., that there is an open affine cover Ui = SpecAi of X such that Ai
is Noetherian for each i. Notice that since the localization of any Noetherian ring is Noetherian, any basic
affine open of Ui is the spectrum of a Noetherian ring. Now let U = SpecA be an open affine subset of X.
For each i, Ui ∩ U is covered by {Vij} where Vij is a basic affine open of both Ui and U . Now, since Vij is
a basic affine open of Ui, it has Noetherian coordinate ring. Furthermore, since the Ui cover X, the Ui ∩ U
cover U , so the Vij cover U . Since U is affine, it is quasicompact, so a finite collection V1, . . . , Vr cover U .
Now, Vi = Spec(Afi) for some fi ∈ A since it is a basic affine open in U . Since the D(fi) = Spec(Afi)
cover U , they must generate the unit ideal (Lemma 2.62). Furthermore, Afi is Noetherian for each i by
hypothesis. Therefore, by Lemma 2.75, A is Noetherian, and we are done.

30



Now, if X = SpecA is a Noetherian scheme, obviously the ring A = OX(X) must be Noetherian. On the
other hand, if A = OX(X) is Noetherian, then {X} suffices as an open cover of X by spectra of Noetherian
rings, so X is locally Noetherian. Furthermore, as an affine scheme, X is quasicompact (see Proposition
6.28), so it is by definition Noetherian.

Definition 2.77 (Scheme over S). Let S be a fixed scheme. A scheme over S is a scheme X, together with
a morphism X → S. If X and Y are schemes over S, a morphism of X to Y as schemes over S (also called
an S-morphism) is a morphism f : X → Y compatible with the structure morphisms to S.

Definition 2.78 (Fibred Product). Let S be a scheme, and let X and Y be schemes over S. Then the fibred
product of X and Y over S, denoted X ×S Y , is a scheme, together with morphisms p1 : X ×S Y → X and
p2 : X ×S Y → Y , which make a commutative diagram with the structure morphisms X → S and Y → S,
satisfying the following universal property:

Given any scheme Z over S, and given morphisms f : Z → X and g : Z → Y which
make a commutative diagram with the structure morphisms X → S and Y → S, there
exists a unique morphism θ : Z → X ×S Y such that f = p1 ◦ θ and g = p2 ◦ θ; that is,
we have the following commutative diagram:

Z X ×S Y

X Y

S

The morphisms p1 and p2 are called the projection morphisms of the fibred product onto its factors.

Theorem 2.79 (The Fibred Product Exists). For any two schemes X and Y over a scheme S, the fibred
product X ×S Y exists, and is unique up to unique isomorphism.

Proof. Pg. 87-88 of Hartshorne.

Definition 2.80 (The Fibre of a Morphism). Let f : X → Y be a morphism of schemes, and let y ∈ Y be
a point. Let k(y) be the residue field of y, and let Spec k(y) → Y be the natural morphism. Then we define
the fibre of the morphism f over the point y to be the scheme

Xy = X ×Y Spec k(y).

Proposition 2.81. If f : X → Y is a morphism, and y ∈ Y is a point, then sp(Xy) is homeomorphic to
f−1(y) with the induced topology.

Proof. First notice that by replacing Y with an open affine subset of Y containing y, we may assume that Y
is affine, say equal to SpecA. Then, we will reduce to the case where X is affine. Take an open affine cover
{Ui} of X, with Ui. Then, we apply the fact that fibred products are constructed from the glueing of affine
products (see Steps 3-5 of Theorem 3.3 of Hartshrone) to see that

Xy = X ×Y κ(y) =

(⋃
i

Ui ×Y κ(y)

)
=
⋃
i

(Ui ×Y κ(y)) =
⋃
i

f−1|Ui
(y) = f−1(y)

as topological spaces, where the fourth equality is exactly the affine case. Therefore it suffices to show the
affine case; that is, we may assume that both X and Y are affine with X = SpecB and Y = SpecA.

In this case, y is a prime ideal p ◁pr A, and from Step 1 of Theorem 3.3 of Hartshorne we have that
Xy = Spec(B ⊗A κ(p)). Next, define S = A \ p, and notice that

B ⊗A κ(p) = B ⊗A Ap/pAp = B ⊗A Ap ⊗A A/p = S−1B ⊗A/p = S−1B/pS−1B.
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Yet Spec(S−1B) = {q ∈ SpecB | f−1(q) ⊆ p}, so by the correspondence of prime ideals in quotients,

Spec(S−1B/pS−1B) = {q ∈ SpecB | f−1(q) ⊆ p, f(p) ⊆ q}.

Yet notice that f(p) ⊆ q implies that p ⊆ f−1(f(p)) ⊆ f−1(q), so in fact

Spec(S−1B/pS−1B) = {q ∈ SpecB | f−1(q) ⊆ p ⊆ f−1(q)} = {p ∈ SpecB | f−1(q) = p} = f−1(p).

Hence Xy = f−1(y) in the induced topology, completing the affine case, so we are done.

Definition 2.82 (Quasi-Finite Morphism). A morphism f : X → Y is called quasi-finite if for every point
y ∈ Y , f−1(y) is a finite set.

Definition 2.83 (Dominant Morphism). A morphism f : X → Y of schemes is called dominant if the image
of f is a dense subset of Y .

Earlier, we discussed open subschemes. As it turns out, there is a notion of a “closed subscheme”, though it
is more complex.

Definition 2.84 (Closed Immersion and Subscheme). A closed immersion is a morphism f : Y → X of
schemes such that f induces a homeomorphism of sp(Y ) onto a closed subset of sp(X), and furthermore
the induced map f# : OX → f∗OY of sheaves on X is surjective. A closed subscheme of a scheme X is an
equivalence class of closed immersions, where we say f : Y → X and f ′ : Y ′ → X are equivalent if there is
an isomorphism i : Y ′ → Y compatible with the immersions f and f ′ (that is, such that f ′ = f ◦ i).

Following is a natural example of a closed subscheme:

Theorem 2.85 (Closed Subscheme of Affine Scheme). If Y is a closed subscheme of an affine scheme
X = SpecA, then Y is also affine; furthermore, Y is the closed subscheme determined by a suitable ideal
a ⊆ A as the image of the closed immersion SpecA/a → SpecA.

Proof. Identify Y with its homeomorphic closed image in X. Firstly, recall that any open subset of Y has
the form U ∩Y for some open subset U of X. Then, since Y is covered by open affine sets, there is some open
affine cover {Ui ∩ Y }i∈I of Y where Ui ⊆ X is open for each i. Now, since the basic open affine sets form a
base of the topology on SpecA, each Ui is the union of basic open affine sets. Therefore, we can replace each
Ui in the open affine cover {Ui ∩ Y } by some D(fj); in other words, we have a new cover {D(fj)∩ Y }j∈J of
Y . I claim that D(fj)∩Y is affine for each j. To see why, fix j and notice that D(fj) = (Ui)fj (where Ui is a
set which was replaced by D(fj) among others) , so D(fj)∩Y = (Ui)fj ∩Y = (Ui ∩Y )fj , which is affine be-
cause Uj∩Y was. Hence, we have an open affine cover of Y of the form {D(fj)∩Y }j∈J , where the fj are in A.

Now, since Y is closed, X \ Y is open, so it is the union of some basic open affine sets. In other words,
we may enlarge the cover of Y by adding more fj until the collection {D(fj)} covers all of X. Since the
fj we add are such that D(fj) ∩ Y = ∅, the open cover {D(fj) ∩ Y }j∈J of Y is still affine. Now, since X
is quasicompact, we may assume that there are only finitely many j ∈ J . In summary, we have elements
f1, . . . , fn such that {D(f1) ∩ Y, . . . ,D(fn) ∩ Y } is an open affine cover of Y , and D(f1), . . . , D(fn) is an
open affine cover of X. From here, we can quickly conclude the result.

Firstly, by Lemma 2.62, f1, . . . , fn generate all of A. Yet, by the definition of a closed immersion f : Y → X,
the map f# : OX → f∗OY is surjective; in particular, we have a surjective map π from A (which is the
ring of global sections of X) to the ring of global sections of Y , which we call B. Clearly, π(f1), . . . , π(fn)
generate all of B. Hence by Lemma 2.63, Y is affine and equals SpecB. Furthermore, by assigning a = kerπ,
we may conclude that B ≃ A/a by the First Isomorphism Theorem, as desired.

2.5 Seperated and Proper Morphisms

Definition 2.86 (Diagonal Morphism and Separated Morphisms). Let f : X → Y be a morphism of
schemes. The diagonal morphism is the unique morphism ∆ : X → X ×Y X whose composition with both
projection maps p1, p2 : X ×Y X → X is the identity map idX . We say that f is separated if the diagonal
morphism ∆ is a closed immersion. In that case, we also say X is separated over Y .
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Definition 2.87 (Separated Schemes). By Theorem 2.59, since Z is an initial object in the category of
rings, SpecZ is a terminal object in the category of schemes. Hence any scheme X comes with a unique map
X → SpecZ. X is said to be separated if this map is separated.

Proposition 2.88. If f : X → Y is any morphism of affine schemes, then f is separated.

Proof. Let X = SpecA, Y = SpecB. Then A is a B-algebra, and X×Y X is also affine, given by SpecA⊗BA
(this is easily proven using the universal properties of fibre products and tensor products and Proposition
2.59). The diagonal morphism ∆ comes from the diagonal homomorphism A⊗B A→ A defined by a⊗ a′ →
aa′. This is a surjective homomorphism of rings, hence ∆ is a closed immersion.

Corollary 2.88.1. An arbitrary morphism f : X → Y is separated if and only if the image of the diagonal
morphism is a closed subset of X ×Y X.

Proof. One implication is obvious, so it suffices to prove that if ∆(X) is a closed subset, then ∆ : X → X×YX
is a closed immersion.

First, we will check that ∆ : X → ∆(X) is a homeomorphism. Let p1 : X×Y X → X be the first projection.
Since p1 ◦∆ = idX , ∆ is injective; it is clearly surjective onto ∆(X), so it is a bijection. Furthermore, ∆ is
obviously continuous, and its inverse is p1, which is also continuous.

Next, we will check that ∆# : OX×YX → ∆∗(OX) is surjective. Using Proposition 2.25, we see that this is
a local question; that is, ∆# is surjective if and only if ∆#

x is surjective for each x. Yet each such stalk map
is also the stalk map of ∆ restricted to an open affine subset (which is surjective by the above proposition).
Hence every stalk map is indeed surjective, and we are done.

Theorem 2.89 (Valuative Criterion of Separatedness). Let f : X → Y be a morphism of schemes, and
assume that X is Noetherian. Then f is separated if and only if the following condition holds:

For any field K, and for any valuation ring R of K, let T = SpecR, U = SpecK, and
i : U → T be the morphism induced by the inclusion R ↪→ K. Given morphisms T → Y
and U → X which makes a commutative diagram, there is at most one morphism
T → X making the whole diagram commute.

U X

T Y

i f

Proof. Pg. 97-99 of Hartshorne.

Corollary 2.89.1. Assume that all schemes are Noetherian in the following statements.

(a) Open and closed immersions are separated.

(b) A composition of two separated morphisms is separated.

(c) Separated morpshisms are stable under base extension.

(d) If f : X → Y and f ′ : X ′ → Y ′ are separated morphisms of schemes over a base scheme S, then the
morphism f × f ′ : X ×S X ′ → Y ×S Y ′ is also separated.

(e) If f : X → Y and g : Y → Z are two morphisms and if g ◦ f is separated, then f is separated.

(f) A morphism f : X → Y is separated if and only if Y can be covered by open subsets Vi such that
f−1(Vi) → Vi is separated for each i.

Proof. Immediate from applying the above criterion.
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Definition 2.90 (Base Extension). Let f : X → Y be a morphism of schemes. Then, given a morphism
Y ′ → Y , and letting X ′ = X ×Y Y ′, we are given a morphism f : X ′ → Y ′ ×Y Y = Y ′, called the base
change of f by the morphism Y ′ → Y .

Definition 2.91 (Proper). A morphism f : X → Y is universally closed if it is closed, and for any morphism
Y ′ → Y , the corresponding morphism f ′ : X ′ → Y ′ obtained by base extension is also closed. A morphism
f : X → Y is proper if it is separated, of finite type, and universally closed.

Theorem 2.92 (Valuative Criterion of Properness). Let f : X → Y be a morphism of schemes, and assume
that X is Noetherian. Then f is separated if and only if the following condition holds:

For any field K, and for any valuation ring R of K, let T = SpecR, U = SpecK,
and i : U → T be the morphism induced by the inclusion R ↪→ K. Given morphisms
T → Y and U → X which makes a commutative diagram, there exists a unique
morphism T → X making the whole diagram commute.

U X

T Y

i f

Proof. Pg. 101-102 in Hartshorne.

Corollary 2.92.1. Assume that all schemes are Noetherian in the following statements.

(a) A closed immersion is proper.

(b) A composition of proper morphisms is proper.

(c) Proper morpshisms are stable under base extension.

(d) If f : X → Y and f ′ : X ′ → Y ′ are proper morphisms of schemes over a base scheme S, then the
morphism f × f ′ : X ×S X ′ → Y ×S Y ′ is also proper.

(e) If f : X → Y and g : Y → Z are two morphisms, g ◦ f is proper, and g is separated, then f is proper.

(f) A morphism f : X → Y is proper if and only if Y can be covered by open subsets Vi such that
f−1(Vi) → Vi is proper for each i.

Proof. Immediate from applying the above criterion.

2.6 Module Sheaves and (Quasi)coherence

Definition 2.93 (OX -Modules). Let (X,OX) be a ringed space. A OX -module is a sheaf F on X such
that (1) for each open set U ⊆ X, F (U) is an OX -module, and (2) for any inclusion of open sets U ⊆ V ,
the restriction homomorphism F (U) → F (V ) are compatible with the restriction maps OX(U) → OX(V );
that is, (fs)|V = f |V s|V .

Definition 2.94 (Morphism of OX -Modules). A morphism F → G of sheaves of OX -modules is a morphism
of sheaves such that for each open set U ⊆ X, the map F (U) → G (U) is a homomorphism ofOX(U)-modules.

Definition 2.95 (Examples of OX -Modules).

(1) Suppose that φ : F → G is a morphism of OX -modules. Then kerφ, imφ, and cokerφ are all
OX -modules.

(2) Suppose that F ′ is a OX -submodule of the OX -module F (that is, F ′ is a OX -module and a subsheaf
of F ). Then F/F ′ is a OX -module.

(3) Any direct sum, direct product, direct limit, or inverse limit of OX -modules is a OX -module.

(4) If F and G are two OX -modules, the sheaf H om U 7→ HomOX |U (F |U ,G |U ) is a OX -module.
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(5) The tensor product of two OX -modules F and G , denoted F ⊗OX
G , is the sheafification of the

presheaf U 7→ F (U)⊗OX(U) G (U).

Definition 2.96 (Free and Locally Free OX -Modules). An OX -module F is free if it is isomorphic to a
direct sum of copies of OX . In this case, the rank of F is the number of copies of OX needed. On the other
hand, F is locally free if there exists an open cover {Ui} for which F |Ui

is a free OX |Ui
-module. In that

case, the rank of F may depend on the open set, but when X is connected it is the same everywhere. A
locally free sheaf of rank 1 everywhere is called an invertible sheaf.

Definition 2.97 (Sheaf of Ideals). A sheaf of ideals on X is a sheaf of modules J which is a subsheaf of
OX . In other words, for every open set U , J (U) is an ideal of OX(U).

Definition 2.98 (Direct and Inverse Images of OX -Modules). Let f : (X,OX) → (Y,OY ) be a mor-
phism of ringed spaces. If F is an OX -module, then f∗F is an f∗OX -module. Since we have a morphism
f# : OY → f∗OX , this makes f∗F naturally a OY -module, called the direct image of F by f .

On the other hand, let G be a sheaf of OY -modules. Then f−1G is an f−1OY -module. Now, we have a
morphism f−1OY → OX . Then, define the inverse image f∗G to be the tensor product f−1G ⊗f−1OY

OX ,
which is naturally a OX -module.

We will not prove this fact, but f∗ and f∗ are adjoint functors between the category of OX -modules and the
category of OY -modules.

Definition 2.99 (Sheaf Associated To a Module). Let A be a ring and M an A-module. Then M̃ , the sheaf
associated to M , is defined as follows:

For any open U ⊆ SpecA, define the group M̃(U) to be the set of functions s : U →∐
p∈U Mp such that for each p ∈ U , s(p) ∈Mp, and such that s is locally a fractionm/f

with m ∈M and f ∈ A (see Definition 2.43 for the precise meaning of this statement).

We also made M̃ into a sheaf by using the obvious restriction maps.

Then M̃ is clearly an OSpecA-module.

Theorem 2.100 (Properties of the Sheaf Associated To a Module). Let A be a ring and M be an A-module.

(1) For each p ∈ SpecA, the stalk (M̃)p of the sheaf M̃ at p is isomorphic to Mp.

(2) For any f ∈ A, the Af -module M̃(D(f)) is isomorphic to Mf . In particular, M̃(X) =M .

(3) The map M → M̃ is an exact, fully faithful functor from the category of A-modules to the category of
OX-modules.

(4) If M and N are two A-modules, then ˜(M ⊗A N) = M̃ ⊗ Ñ .

(5) If {Mi} is a family of A-modules, then ˜(
⊕

iMi) ≃
⊕

i M̃i.

(6) Let A → B be a ring homomorphism and f : SpecB → SpecA be the corresponding morphism of

spectra. Then, any B-module N is naturally an A-module, and f∗(Ñ) ≃ Ñ as OSpecA-modules.

(7) Let A → B be a ring homomorphism and f : SpecB → SpecA be the corresponding morphism of

spectra. Then, for any A-module M , f∗(M̃) ≃ ˜(M ⊗A B) as OSpecB-modules.

Proof. The proofs of (1) and (2) are analogous to the proofs in the case of rings. To prove (3), notice that
the functor is exact because localization and exact and exactness of sheaves can be measured at the stalks,
which are computed by localization. Furthermore, it is fully faithful (i.e. HomA(M,N) ≃ HomOX

(M̃, Ñ)

because the functor gives a natural map HomA(M,N) → HomOX
(M̃, Ñ) and evaluation at global sections

gives a natural inverse map in the opposite direction.

(4) and (5) follow immediately because direct sum and tensor product commute with localization, so one may
quickly compute that the natural maps are isomorphisms. Finally, (6) and (7) follow from the definitions.
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Definition 2.101 (Quasicoherent and Coherent OX -Modules). Let (X,OX) be a scheme. A sheaf of OX -
modules F is quasicoherent if X can be covered by open affine subsets Ui = SpecAi such that for each i
there is an Ai-module Mi with F |Ui

≃ M̃i. We say that F is coherent if furthermore each Mi can be taken
to be a finitely generated Ai-module.

Lemma 2.102 (Global and Restricted Sections of OX -Modules). Let A be a ring, take f ∈ A, and let F
be a quasicoherent sheaf on X. Then,

(a) If s ∈ F (X) is a global section of F whose restriction to D(f) is 0, then for some n > 0, fn(s) = 0.

(b) Given a section t ∈ F (D(f)) of F over the open set D(f), then for some n > 0, fn(t) extends to a
global section of F over X.

Proof. First, since F is quasicoherent, by definition X can be covered by open affine subsets {Ui} (with

Ui = SpecAi) such that for each i there is an Ai-module Mi with F |Ui = M̃i. Now, recall that the basic
affine opens D(f) form a base for the topology of X, so for each i, Ui is the union of D(fij) for various
fij ∈ A. Now, the inclusion map D(fij) ↪→ Ui corresponds to a ring homomorphism Ui → Afij , making Afij

into a Ui-module. Therefore, consider the Afij -module Mi ⊗Ai
Afij ; notice that F |Dg

≃ ˜Mi ⊗Ai
Afij .

Thus, by renumbering, if F is quasicoherent on X then X can be covered by basic affine opens D(fj) such

that, for each j, F |D(fj) ≃ M̃j for some module Mj over the ring Afj . As an affine scheme, X is quasicom-
pact, so we may assume there are only finitely many j.

(a): Now suppose s ∈ F (X) satisfies s|D(f) = 0. Then, for each j, s|D(fj) is an element ofMj . Furthermore,

D(f) ∩D(fj) = D(ffj), so F |D(ffj) = (̃Mi)f by Theorem 2.100. Now, the image of s in (Mi)f is zero, so
by the definition of localization fnj (s|D(fj)) = 0 for some nj . Now, since there are finitely many j, we may
choose n larger than all the nj , so that fns restricts to 0 on each D(fj) and therefore fns = 0.

(b): Take t ∈ F (D(f)). Then, as before, for each j we may restrict t to F (D(ffj)) = (Mj)f . By the
definition of localization, for some n > 0 there is an element tj ∈ Mj = F (D(fj)) which restricts to
fnj t on D(ffj). Again, we choose n to be larger than all the nj , so that for each j we have an element
tj ∈ Mj = F (D(fj)) such that tj restricts to fnt on D(ffj). Now, we seek to glue the tj together
to a global section of F . However, they may not necessarily agree. Therefore, consider the intersection
D(fj)∩D(fk) = D(fjfk). Now, in D(ffjfk), tj and tk are equal to fnt; in particular, there their difference
is 0, so there is an integer mjk such that fmjk(tj − tk) = 0 in D(fjfk) by part (a). Choose m to be larger
than all the mjk, so that fm(tj − tk) = 0 in D(fjfk) for all j, k. Then the fmtj are compatible for all j, so
they glue together a global section s of F whose restriction to D(f) is fn+mt.

Theorem 2.103 (Stronger Notion of (Quasi)coherence). Let X be a scheme. Then a OX-module F is
quasicoherent if and only if for every open affine subset U = SpecA of X, there is an A-module M such that
F |U ≃ M̃ . If X is also Noetherian, if F is coherent if and only if for every open affine subset U = SpecA

of X, there is a finitely-generated A-module M such that F |U ≃ M̃ .

Proof. Let F be quasicoherent on X and let U = SpecA be an open affine. As in the proof of Lemma 2.102,
there is a base for the topology consisting of open affines for which the restriction of F is the sheaf associ-
ated to a module. In particular, F |U is quasicoherent, so we may assume thatX is affine, say equal to SpecA.

Now, let M = F (X); it suffices to show that F = M̃ . For this, consider the natural map α : M̃ → F ; we
will show it is an isomorphism. Now, as in the proof of the preceding lemma, X can be covered by open
sets D(fj) with F |D(fj) ≃ M̃j for some Afj -module Mj . Now, the lemma, applied to the open set D(fj),
tells us that F (D(fj)) = Mfj , so Mi = Mfj . It follows that α restricted to D(fj) is an isomorphism, and
since the D(fj) cover X, α is an isomorphism. Now, suppose X is Noetherian and F is coherent. Then the
remainder of the result follows from Lemma 2.72.

Corollary 2.103.1. Let A be a ring with spectrum X = SpecA. Then the functor M 7→ M̃ gives an
equivalence of categories between the category of A-modules and the category of quasicoherent OX-modules
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(the inverse is given by M̃ 7→ M̃(X). Furthermore, if A is a Noetherian ring, M 7→ M̃ gives an equivalence
of categories between the category of finitely-generated A-modules and the category of coherent OX-modules
(with the same inverse).

Proposition 2.104 (Exactness of Evaluation). Let X be an affine scheme, 0 → F ′ → F → F ′′ → 0 be
an exact sequence of OX-modules, and assume that F ′ is quasi-coherent. Then the sequence 0 → F ′(X) →
F (X) → F ′′(X) → 0 is exact.

Proof. By Theorem 2.30, it suffices to show that F (X) → F ′′(X) is surjective. Let s ∈ F ′′(X); since
F → F ′′ is surjective, by Proposition 2.26 and the quasicompactness of X, there are finitely many f1, . . . , fn
such that s|D(fi) lifts to a section ti ∈ F (D(fi)) for each i and D(f1), . . . , D(fn) covers X. We may force
the ti to be compatible without changing where they map, and then glue them together into a global section
t ∈ F (X) which maps to s, as desired.

Proposition 2.105 (Examples of Quasicoherent Sheaves).

(1) The kernel, cokernel, and image of any morphism of quasicoherent sheaves are quasicoherent. If X is
Noetherian, the same is true for coherent sheaves.

(2) Any extension of quasicoherent sheaves is quasicoherent. If X is Noetherian, the same is true for
coherent sheaves.

(3) If f : X → Y is a morphism of schemes, and G is a quasicoherent OY -module, then f∗G is a
quasicoherent OX-module. If X and Y are Noetherian, and G is coherent, then f∗G is also coherent.

(4) Let f : X → Y be a morphism of schemes, and assume either that X is Noetherian or f is quasi-
compact and seperated. Then, if F is a quasicoherent OX-module, f∗F is a quasicoherent OY -module.

Proof. As previously discussed (in say Lemma 2.102 and Theorem 2.103), the question is local, so we may
assume that X = SpecA is affine for (1) and (2). Also, throughout, we will skip the proofs of the additional
“coherent if coherent over Noetherian” statements, as they are generally very simple.

(1) immediately follows from Theorem 2.100(3) and Theorem 2.103.

For (2), notice that given an exact sequence 0 → F ′ → F → F ′′ → 0 of OX -modules with F ′ and F ′′

quasicoherent, we get an exact sequence 0 → M ′ → M → M ′′ → 0 by taking global sections. Then, by
Theorem 2.100(c), we get an exact sequence 0 → M̃ ′ → M̃ → M̃ ′′ → 0. Now, adding the natural maps, we
get a commutative diagram

0 M̃ ′ M̃ M̃ ′′ 0

0 F ′ F F ′′ 0

where the two outside arrows are isomorphisms, so by the 5-lemma, the middle one is also, showing that F
is quasi-coherent. Hence any extension of quasicoherent sheaves is quasicoherent.

(3)-(4): Pg. 116 of Hartshorne.

Definition 2.106 (Ideal Sheaf of Closed Subscheme). Let Y be a closed subscheme of a scheme X, and let
i : Y → X be the inclusion morphism. Then we define the ideal sheaf of Y , denoted JY , to be the kernel
of the morphism i# : OX → i∗OY .

Proposition 2.107 (Properties of Ideal Sheaves). Let X be a scheme. For any closed subscheme Y of X,
the corresponding ideal sheaf JY is a quasicoherent sheaf of ideals of X. If X is Noetherian, then JY is
also coherent. Conversely, any quasicoherent sheaf of ideals on X is the ideal sheaf of a uniquely determined
closd subscheme of X.
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Proof. If Y is a closed subscheme of X, then the inclusion morphism i : Y → X is quasicompact (as it is
injective) and separated by Corollary 2.89.1. Hence, by Proposition 2.105, JY is the kernel of a morphism
of quasicoherent sheaves and hence is quasicoherent. If X is Noetherian, then for any open affine subset
U ⊆ X, the coordinate ring of U is Noetherian, so the ideal I = JY |U (U) is finitely generated. Hence, in
this case, JY is coherent.

Conversely, given a scheme X and a quasicoherent sheaf of ideals J , let Y be the support of the quotient
sheaf OX/J . Then Y is a subspace of X; I claim that (Y,OX/J ) is the unique closed subscheme of X with
ideal sheaf J . The uniqueness is clear, so we have only to check that (Y,OX/J ) is a closed subscheme.
This is a local question, so assume that X = SpecA is affine. Since J is quasicoherent, this implies that
J = ã for some ideal a ◁ A. Then (Y,OX/J ) is just the closed subscheme of X determined by a.

Now, we can give a much quicker proof of the characterization of closed subschemes of affine schemes (recall
Theorem 2.85):

Corollary 2.107.1 (Closed Subschemes of Affine Schemes). If X = SpecA is an affine scheme, there is a
bijective correspondence between ideals a in A and closed subschemes Y of X, given by a 7→ SpecA/a ⊆ X.
In particular, every closed subscheme of an affine scheme is affine.

Proof. This follows from the above result and Corollary 2.103.1.

We conclude with some more technical results about sheaf modules:

Definition 2.108 (Dual). Let (X,OX) be a ringed space, and let E be an OX -module. We define the dual
of E , denoted Ě , to be the sheaf H omOX

(E ,OX).

First, let us discuss some basic results analogous to results about modules. For this, we need an algebraic
lemma:

Lemma 2.109. Suppose that A is a commutative ring and M,N are A-modules. Define a map Φ :
Hom(M,A) × Hom(N,A) → Hom(M ⊗ N,A) as follows. Suppose that (ϕ, ψ) ∈ Hom(M,A) × Hom(N,A).
This induces a unique natural map ρ :M ×N → A, which is bilinear and hence induces a map M ⊗N → A,
which we define to be Φ(ϕ, ψ). Then Φ is an isomorphism.

Proof. This fact follows because there is an inverse map Ψ to Φ. Namely, suppose we are given a map
ρ : M ⊗ N → A, we may compose this map with the natural map M × N → M ⊗ N to get a map
M ×N → A. Then, we may compose these maps with the natural maps M →M ×N and N →M ×N to
get a pair Ψ(ρ) of maps M → A, N → A. It is easy to check that Φ(Ψ(ρ)) = ρ and Ψ(Φ(ϕ, ψ)) = (ϕ, ψ), so
the result follows.

Theorem 2.110.

(a) Let E be a locally free OX-module of finite rank. Then (Ě )ˇ≃ E .

(b) Let E be a locally free OX-module of finite rank. Then, for any OX-module F , H omOX
(E ,F ) ≃

Ě ⊗OX
F .

(c) (Ě ⊗ F̌ ) ≃ (E ⊗ F )ˇ.

(d) For any OX-modules F ,G , H omOX
(E ⊗ F ,G ) ≃ H omOX

(F ,HomOX
(E ,G )).

(e) (Projection Formula). If f : (X,OX) → (Y,OY ) is a morphism of ringed spaces, if F is an OX-
module, and if E is a locally free OY -module of finite rank, then there is a natural isomorphism
f∗(F ⊗OX

f∗E ) ≃ f∗(F )⊗OY
E .

Proof.
(a): First, we will define a map ϕ : E → (Ě )ˇ as follows: for any open U ⊆ X, take s ∈ E (U). Then define
ϕU (s) ∈ (Ě )ˇ(U) to be the map taking ψ ∈ HomOX

(E ,OX)(U) to ψ(s) ∈ OX(U).
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This is clearly a map of OX -modules; it is plainly a morphism of sheaves with the natural restriction maps
(because the map from a module to its double dual is natural), and furthermore the map ψ 7→ ψ(s) is a
homomorphism of OX(U)-module. Furthermore, because E is locally free, we may cover X with opens Vi
such that E |Vi

≃ On
Vi

for some n. Yet, on these opens, ϕ|Vi
is an isomorphism, so by uniqueness of gluing,

ϕ is an isomorphism, as desired.

(b): First, we define a map ϕ : Ě ⊗OX
F → HomOX

(E ,F ). By the universal property of the tensor product
of sheaves, this is equivalent to finding a OX -bilinear map ϕ′ : Ě × F → HomOX

(E ,F ). Define ϕ′(U) as
follows: given (f, s) ∈ Ě (U)× F (U), consider f as a map E |U → OX |U . Then, notice that with s ∈ F (U),
f induces a natural map E |U → F |U . Such a map is simply an element of HomOX

(E ,F )(U), as desired.

Now, we may again apply the trick of restricting ϕ to an open cover {Vi} where E |Vi is free (and therefore
where the restriction of ϕ is an isomorphism), and glue together to see that ϕ is an isomorphism.

(c): First, we will define a bilinear map Eˇ× Fˇ → (E ⊗ F )ˇ. For this, suppose we are given an element
(ϕ, ψ) ∈ Eˇ× Fˇ; that is, ϕ : E → OX and ψ : F → OX are morphisms. Then we have a unique map
ρ : E × F → OX commuting with the projections onto E ,F and ϕ, ψ. Now, ρ is plainly a bilinear map, so
it induces a map (E ⊗ F )ˇ→ OX . This provides a map Φ : Eˇ× Fˇ→ (E ⊗ F )ˇ. This map is natural by the
uniqueness of ρ, which itself is guaranteed by the uniqueness of the induced map in the universal property of
the (co)product. Therefore, it suffices to prove that Φ is an isomorphism. But this is easy: we may simply
check that ΦU is an isomorphism for each U using Lemma 2.109.

(d): Recall that for each open U ⊆ X there is a natural isomorphism HomOX(U)(E (U) ⊗ F (U),G (U)) ≃
HomOX(U)(F (U),HomOX(U)(E (U),G )(U)) afforded by the tensor-hom adjunction. Because this isomor-
phism is OX(U)-linear, and natural in F (U) and G (U), the components of the isomorphism may be glued
together to give an OX -isomorphism HomOX

(E ⊗F ,G ) ≃ HomOX
(F ,HomOX

(E ,G )). Indeed, they may be
glued together to give a OX |U -isomorphism HomOX

(E ⊗ F ,G )|U ≃ HomOX
(F ,HomOX

(E ,G ))|U for each
U . This isomorphisms are natural (by the naturality of the isomorphism of the tensor-hom adjunction), so
they are the components of an isomorphism H omOX

(E ⊗ F ,G ) ≃ H omOX
(F ,HomOX

(E ,G )). This also
inherits naturality from the naturality of the isomorphism in the tensor-hom adjunction.

(e): By parts (a) and (b), we have

f∗F ⊗OY
E ≃ f∗F ⊗OY

(Ě )ˇ≃ H omOY
(Ě , f∗F ).

Furthermore, for any F and G , we have HomOX
(f∗G ,F ) ≃ HomOY

(G , f∗F ), and also the corresponding
statement for each restriction, so we glue together anOY -isomorphism f∗H omOX

(f∗G ,F ) ≃ H omOY
(G , f∗F ).

Plugging this result into the above,

f∗F ≃ H omOY
(Ě , f∗F ) ≃ f∗ HomOX

(f∗(Ě ),F ) ≃ f∗(F ⊗OX
f∗(Ě )ˇ) ≃ f∗(F ⊗OX

f∗(E ))

and we are done.

Next, let us discuss a characterization of “invertible sheaves” which explains the terminology. For this, we
need an algebraic lemma.

Lemma 2.111. Suppose that A,m is a local ring with residue field k and finitely-generated A-modules M,N .
Then if M ⊗A N ≃ A, M ≃ A and N ≃ A.

Proof. First, notice that

k ≃ k ⊗A A ≃ k ⊗A (M ⊗A N) ≃ k ⊗A (M ⊗A N)⊗k k ≃ (k ⊗AM)⊗k (k ⊗A N)

so both (k ⊗AM) ≃M/mM and (k ⊗A N) ≃ N/mN are 1-dimensional k-vector spaces. Then any nonzero
elements of (k ⊗AM) and (k ⊗A N) generate M and N over A by Nakayama’s Lemma, so M and N have
rank 1. Furthermore, they are free of rank 1, because any element which annihilates M or N annihilates
M ⊗A N ≃ A, and the only annihilator of A is 0. Hence M ≃ A and N ≃ A, as desired.
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Theorem 2.112 (Alternate Characterization of Invertible Sheaves). Let X be a Noetherian scheme, and let
F be a coherent sheaf.

(a) If the stalk Fx is a free Ox-module for some point x ∈ X, then there is a neighborhood U of x such
that F |U is free.

(b) F is locally free if and only if its stalks Fx are free Ox-modules for all x ∈ X.

(c) F is invertible (i.e., locally free of rank 1) if and only if there is a coherent sheaf G such that F ⊗G ≃
OX . (This justifies the terminology invertible: it means that F is an invertible element of the monoid
of coherent sheaves under the operation ⊗.)

Proof.
(a): Let V be an open affine neighborhood of x with V = SpecA, and let p ◁pr A be the prime ideal

corresponding to x. By Proposition 5.4, F |V = M̃ for some finite A-module M . The statement “Fx is
a free Ox-module” then becomes “Mp is a finite free Ap-module”. Now, suppose that m1/a1, . . . ,mn/an
freely generate Mp as an Ap-module. Then also m1, . . . ,mn freely generate Mp as an Ap-module, since
a1, . . . , an ∈ A \ p are units. This induces a map ϕ : An →M given by sending the ith basis element to mi.

Now, ϕ has an associated morphism Φ of sheaf modules. Let the support of the kernel of Φ be called K,
and the support of the cokernel of Φ be called C. Now, since Φ is an isomorphism at x by assumption, x is
not in K or C. Recall that the support of the kernel and the cokernel are closed, so K and C are closed;
in particular K ∪ C is closed whence X \ K ∪ C is open. Therefore exists some open neighborhood D(f)
of x contained in X \ K ∪ C. Yet on D(f), Φ is an isomorphism, since the kernel and cokernel are zero
everywhere on D(f). Hence ϕf : Anf →Mf is an isomorphism and F |D(f) is free.

(b): If F is locally free, then obviously its stalks Fx are free Ox-modules for all x ∈ X. The other direction
follows immediately from (a). To see why, suppose that all the stalks Fx of F are free Ox-modules. Then
for each point x ∈ X there exists a neighborhood Ux of x such that F|Ux

is free. But then {Ux}x∈X is an
open cover of X such that F|Ux

is free for each Ux, so F is locally free.

(c): Suppose F is invertible. Then by 5.1(b), F ⊗OX
F̌ ≃ H omOX

(F ,F ). Yet we may glue together a
isomorphism H omOX

(F ,F ) ≃ OX by restricting to an open cover where the restriction of F is free of
rank 1 (clearly, for such restrictions, the isomorphism holds), so in fact F ⊗OX

F̌ ≃ OX , as desired.

Conversely, suppose that there exists a coherent sheaf G such that F ⊗ G ≃ OX . Then, (F ⊗OX
G )x =

Fx ⊗OX
Gx = Ox for all x ∈ X, so by part (a) we have reduced to Lemma 2.111.

Theorem 2.113 (A Criterion for Being Locally Free). Let X be a Noetherian scheme, and F a coherent
sheaf on X. Consider the function

φ(x) = dimk(x) Fx ⊗Ox
k(x),

where k(x) = Ox/mx is the residue field at the point x. Then,

(a) The function φ is upper semi-continuous, i.e., for any n ∈ Z, the set {x ∈ X | φ(x) ≥ n} is closed.

(b) If F is locally free, and X is connected, then φ is a constant function.

(c) Conversely, if X is reduced, and φ is constant, then F is locally free.

Solution 2.1.
(a): By Lemma 6.12, it suffices to show the result when X is affine, say equal to SpecA for a Noetherian

ring A. Since F is a coherent sheaf, it is equal to M̃ for some finite A-module M , say generated by nonzero
elements m1, . . . ,mk. Now, to show that {p ∈ X | φ(p) ≥ n} is closed for each n, it suffices to show that
{p ∈ X | φ(p) ≤ n} is open for each n. For this, it suffices to show if p ∈ X satisfies φ(p) = n, there is a
neighborhood U of p with φ(q) ≤ n for all q ∈ U .
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Now, let p ◁pr A, so that φ(p) = dimk(p)Mp ⊗Ap
k(p) = dimk(p)Mp/pMp. Choose a k(p)-basis v′1, . . . , v

′
n

for this vector space. By Nakayama’s Lemma, these elements lift to a spanning set v1, . . . , vn of Mp as an
Ap-module. Indeed, we may assume that v1, . . . , vn lie in M , by clearing denominators if necessary.

Now, since v1, . . . , vn span Mp, there exist aij ∈Mp such that mi =
∑
j aijvj for each i. Write aij =

bij
cij

for

bij ∈ A and cij ∈ A \ p. Then, let c ∈ A be the product of all the cij . Then plainly p ∈ D(c). Indeed, I claim
that D(c) is the desired neighborhood U of p. For this, suppose that q ∈ D(c). Then aij is an element of
Mq, since we can write it as

aijc
c (note that aijc ∈ A and c ∈ A \ q since q ∈ D(c)). Hence mi =

∑
j aijvj

is a valid expression in Mq. Yet then the mi generate Mq as a Aq-module, so v1, . . . , vn generate Mq as an
Aq-module and φ(q) ≤ n, as desired.

(b): If F is locally free, then there is an open cover {Ui} such that F |Ui
≃ OX |⊕riUi

for some ri. But then
Fx⊗Ox

k(x) ≃ O⊕ri
x ⊗Ox

k(x) ≃ k(x)⊕ri is a ri-dimensional k(x)-vector space for all x ∈ Ui, so φ is constant
equal to ri on Ui. Since the Ui cover X, and X is connected, this implies that φ is constant on X.

(c): Plainly it suffices to consider the affine case, since being locally free is a local property. Therefore,

assume that X = SpecA for a reduced Noetherian ring A. Then, since it is coherent, F = M̃ for some finite
A-module M . Now, by Theorem 2.112, it suffices to argue that Fp is a free Ap-module for each p ◁pr A.
Now, since φ is constant, say equal to n everywhere, Mp⊗Ap

k(p) ≃Mp/pMp is a n-dimensional k(p)-vector
space. Take a basis v′1, . . . , v

′
n of this vector space; by Nakayama’s Lemma these elements lift to a spanning

set v1, . . . , vn of Mp. It remains to demonstrate that v1, . . . , vn are linearly independent over Ap.

For this, take a linear sum
∑
aivi = 0 with ai ∈ Ap. Now, because the vi are a basis for Mp/pMp, the image

of the ai must be zero; that is, ai ∈ p for each i. Now take q ⊆ p; the images of v1, . . . , vn in Mq generate
Mq, and we still have

∑
aivi = 0 in Mq. Therefore, v1, . . . , vn span the n-dimensional k(q)-vector space

Mq/qMq, so they must be linearly independent in Mq/qMq. Yet this forces the image of the ai to be zero,
whence ai ∈ q for each i. In summary, ai ∈ q for any q ⊆ p.

Yet this implies that ai ∈
⋂

q⊆p q, which is the nilradical of Ap. Yet the localization of any reduced ring is
reduced, so Ap is reduced and therefore has zero nilradical. Hence ai = 0 ∈ Ap, as desired.

2.7 Recontextualizing Varieties as Schemes

First, using our currently exist definition of varieties, let us discuss how varieties can be interpreted as
schemes using a fully faithful functor.

Theorem 2.114. Let k be an algebraically closed field. There is a natural fully faithful functor t : Var(k) →
Sch(k) from the category of varieties over k to the category of schemes over k. For any variety V , its
topological space is homeomorphic to the set of closed points of sp(t(V )), and its sheaf of regular functions
is obtained by restricting the structure sheaf of t(V ) via this homeomorphism.

Proof. Pg. 78-79 of Hartshorne.

However, this inspires us to make a purely scheme-theoretic definition of varieties. This new definition will
in fact be a generalization of our old definition of varieties, which we will call quasi-projective varieties. To
distinguish them for the old definition, we call these “abstract varieties”.

Definition 2.115 (Abstract Variety). An abstract variety (or, from here on out, just variety) is an integral
separated scheme of finite type over an algebraically closed field k. If it is proper over k, we will also say it
is complete. Intuitively, an abstract variety is one which locally looks like affine varieties, just as a scheme
locally looks like affine schemes.
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3 Curves

To be completed in the summer.
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4 Computational Algebraic Geometry

To be completed in the summer.
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5 Arithmetic Geometry

To be completed in the summer.
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Appendix

A Results from Commutative Algebra

A.1 Assorted Useful Facts

Lemma 6.1. Let A be a reduced commutative ring of finite Krull dimension. Then A has a unique minimal
prime ideal p if and only if A is an integral domain.

Proof. (⇒) Suppose p is the unique minimal prime ideal of A. First, recall that the intersection of all prime
ideals of A is the nilradical of A; in our case, this implies that the intersection of all prime ideals of A is
(0). Yet any prime ideal q of A contains p, and hence p ⊆

⋂
q◁prA

q. To see why, suppose that q does not
contain p. Then, since q is not equal to p, it is not minimal, so it must properly contain some q1 ◁pr A,
which cannot be equal to p since then q would contain p. But we can repeat this process to choose an infinite
chain q ⊋ q1 ⊋ q2 ⊋ · · · which contradicts the fact that A has finite dimension. Hence p ⊆ (0), implying
that p = (0) is prime and hence that A is an integral domain, as desired.

(⇐) Suppose that A is an integral domain. Then (0) is a prime ideal of A contained in every other (prime)
ideal of A, hence it is the unique minimal prime ideal.

A.2 Hilbert’s Nullstellensatz

Our proof of Noether Normalization, which is used to prove the Nullstellensatz, is adapted from here.

First, we begin with a technical lemma which outlines a useful automorphism of polynomial rings:

Lemma 6.2. Suppose that k is a field and f ∈ k[x1, . . . , xn] is a nonzero polynomial in n variables over f .
Let N be an integer greater than deg(f). Now define ϕ : k[x1, . . . , xn] → k[x1, . . . , xn] to be the k-algebra
automorphism given as follows:

x1 7→ x1 + xNn x2 7→ x2 + xN
2

n · · · xn−1 7→ xn−1 + xN
n−1

n xn 7→ xn.

Then ϕ(f) is equal to a nonzero scalar of k times a polynomial g which is monic in xn when considered as a
polynomial in one variable over k[x1, . . . , xn−1]. That is, the term of ϕ(f) in which xn appears to the highest
power has the form cxmn for some c ∈ k×.

Proof. First simplify f by combining like terms. Then, consider any nonzero monomial cxa11 x
a2
2 · · ·xann in f

(note that c ∈ k×). Then the image of this monomial under ϕ is

ϕ(cxa11 x
a2
2 · · ·xann ) = (x1 + xNn )a1(x2 + aN

2

n )a2 · · · (xn−1 + xN
n−1

n )xann .

When expanded, the term of this polynomial in which xn appears to the highest power is plainly equal to

c(xNn )a1(xN
2

n )a2 · · · (xNn−1

n )an−1xann = cx
an+a1N+a2N

2+···+an−1N
n−1

n = cxmn .

Now, N > deg(f) implies N > a1, . . . , an. Now take any two distinct monomials f1, f2 of f (recall that we
have combined like terms, so the powers of x1, . . . , xn cannot be the same in both monomials). Since any
integer has a unique base N representation, the terms of ϕ(f1) and ϕ(f2) in which xn appears to the highest
power must have different degree. In other words, there is a unique nonzero monomial of f whose image has
the term with the strictly greatest power of xn, and said term has the form cxmn for some c ∈ k×.

Lemma 6.3 (Noether Normalization Lemma). Let k be a field and A a finitely-generated k-algebra. Then,
there are elements z1, . . . , zm ∈ A such that z1, . . . , zm are algebraically independent over k, and A is finite
(in particular integral) over k[z1, . . . , zm].

Proof. We will use induction on the number n of generators of A over k. Now, in the base case n = 0, A = k
and the result is trivial. For the inductive step, suppose that n > 0 and that the result holds whenever the
number of generators is less than n. Let y1, . . . , yn generate A over k. If the yi are algebraically independent
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over k, then we may assign zi = yi and we are done.

On the other hand, suppose that the yi are not algebraically independent over k. Then there is a nonzero
polynomial f ∈ k[x1, . . . , xn] such that f(y1, . . . , yn) = 0. Now, define y′1 = y1−yNn , . . . , y′n−1 = yn−1−yN

n−1

n ,
and y′n = yn, where N > deg(f); these elements also generate A over k. Now, recalling how ϕ was defined
in Lemma 6.2, notice that y1, . . . , yn satisfy the polynomial ϕ(f) = g. By Lemma 6.2, by replacing g by
c−1g, we may assume that g is monic in xn with coefficients in k[x1, . . . , xn−1]. Therefore y′n is integral
over k[x1, . . . , xn−1], so A = k[y′1, . . . , y

′
n] is a finite k[y′1, . . . , y

′
n−1]-module. But then, by the inductive

hypothesis, there exist algebraically independent z1, . . . , zm ∈ k[y′1, . . . , y
′
n−1] such that k[y′1, . . . , y

′
n−1] is a

finite k[z1, . . . , zm]-module. But then A is a finite k[z1, . . . , zm]-module, so we are done.

Proposition 6.4 (Integral Extension of Integral Domains). Let A ⊆ B be an integral extension of integral
domains. Then A is a field if and only if B is a field.

Proof. Assume that A is a field and take 0 ̸= x ∈ B. Then there is a monic relation xn+an−1x
n−1+· · ·+a0 =

0 with ai ∈ A. We may assume that a0 ̸= 0. Now, A is a field, therefore

x−1 = −a−1
0 (xn−1 + an−1x

n−2 + · · ·+ a2x+ a1) ∈ B

so B is a field. Similarly, assume that B is a field and 0 ̸= x ∈ A. Then x−1 ∈ B, so x−1 is integral over A.
Then there is a relation of the form

x−n + an−1x
n−1 + · · ·+ a0 = 0

whence x−1 = x−1 = −an−1 − an−2x− · · · − xn−1a0 ∈ A, so A is indeed a field, as desired.

Lemma 6.5 (Zariski’s Lemma). If L/k be a field extension such that L is a finitely-generated k-algebra.
Then L/k is a finite field extension.

Proof. By Noether’s Normalization Lemma (Lemma 6.3), there exists an injective k-algebra morphism ϕ :
k[z1, . . . , zr] ↪→ L. In particular, L is finite over k[z1, . . . , zr], so it is integral over k[z1, . . . , zr]. By Proposition
6.4, since L and k[z1, . . . , zr] are both integral domains, L is a field if and only if k[z1, . . . , zr] is a field. Yet
k[z1, . . . , zr] is a field if and only if r = 0, so L is finite over k and we are done.

Proposition 6.6 (The Weak Nullstellensatz). Maximal ideals of k[x1, . . . , xn] correspond precisely to points
of Ank . More precisely, every maximal ideal of A = k[x1, . . . , xn] is of the form

m = (x1 − a1, . . . , xn − an) for some a1, . . . , an ∈ k

and every ideal of the form (x1 − a1, . . . , xn − an) for some a1, . . . , an ∈ k is maximal.

Proof. Clearly every ideal of the form a = (x1 − a1, . . . , xn − an) for some a1, . . . , an ∈ k is maximal, since
k[x1, . . . , xn]/a ≃ k, a field (this isomorphism is obvious since taking said quotient is like “replacing xi with
ai”). On the other hand, k[x1, . . . , xn]/m is a finitely generated k-algebra for any ideal m ◁ k[x1, . . . , xn].
If, furthermore, m is maximal, K = k[x1, . . . , xn]/m is a field, so by Zariski’s Lemma (see Lemma 6.5), K is
a finite extension over k. Yet k is algebraically closed, so K = k.

By taking ai to be the image of xi for each i ∈ {1, . . . , n}, we see that (x1 − a1, . . . , xn − an) ⊆ m. Yet we
already know that (x1 − a1, . . . , xn − an) is maximal, so m = (x1 − a1, . . . , xn − an), as desired.

Corollary 6.6.1. If J ◁ k[x1, . . . , xn], then J is equal to k[x1, . . . , xn] if and only if V (J) = ∅.

Proof. If J is a proper ideal, it is contained in a maximal ideal m. Then V (m) ⊆ V (J), but V (m) is a single
point (by the Weak Nullstellensatz) so V (J) is nonempty. On the other hand, if J is not a proper ideal (it
is the whole ring), then V (J) = ∅ since the polynomial 1 vanishes nowhere.

Theorem 6.7 (Hilbert’s Nullstellensatz). For any a ◁ k[x1, . . . , xn], I(Z(a)) =
√
a.
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Proof. Clearly,
√
a ⊆ I(Z(a)). Thus it suffices to show that I(Z(a)) ⊆

√
a. Take g ∈ I(Z(a)); we will show

that gj ∈ a for some j ∈ N. To do this, we will use Rabinowitsch’s trick, which goes as follows.

Let f1, . . . , fm generate a. Then f1, . . . , fm, xn+1g−1 ∈ k[x1, . . . , xn+1] have no common zeros in An+1
k . This

is because, in Z(a), the former polynomials are all 0, but the last polynomial is −1. But all of f1, . . . , fm
cannot vanish outside Z(a) (by definition), so there are no common zeros outside of Z(a) either. Thus, by
Corollary 6.6.1, these polynomials generate the entirety of k[x1, . . . , xn+1]. In particular:

1 = p1f1 + · · ·+ pmfm + pm+1(xn+1g − 1)

for some p1, . . . , pm+1 ∈ k[x1, . . . , xn+1]. Under the homomorphism k[x1, . . . , xn+1] → k(x1, . . . , xn) given
by fixing k[x1, . . . , xn] and sending xn+1 7→ g−1, we see that the final term vanishes;

1 = p1(x1, . . . , xn, g
−1)f1 + · · ·+ pm(x1, . . . , xn, g

−1)fm

whence, by letting j be the largest power to which g−1 appears in any of the fi, we see that

gj = q1f1 + · · ·+ qmfm ∈ J

for some q1, . . . , qm ∈ k[x1, . . . , xn], as desired.

A.3 Dimension Theory of Noetherian Rings

At some point, I may add proofs to this section instead of relying on references, but for now these will do.

Theorem 6.8. Let k be a field, and A an integral domain which is a finitely-generated k-algebra. Then the
dimension of A is equal to the transcendence degree of the quotient field FracA over k, and for any prime
ideal p ◁ A, we have ht p+ dimA/p = dimA.

Proof. This can be found in §14 of Matsumura’s Commutative Algebra or, when k is algebraically closed,
Ch. 11 of Atiyah-Macdonald’s Introduction to Commutative Algebra

Theorem 6.9 (Krull’s Haupidealsatz). Let A be a Noetherian ring, and let a ∈ A be a nonunit non-zero
divisor. Then every minimal prime ideal containing a has height 1.

Proof. This can be found in Ch. 11 of Atiyah-Macdonald’s Introduction to Commutative Algebra.

Theorem 6.10. A Noetherian domain A is a UFD if and only if every prime ideal of height 1 is principal.

Proof. This can be found in §19 of Matsumura’s Commutative Algebra.

B Results from Topology

B.1 Local Conditions

Clearly, being open is a local condition. That is,

Lemma 6.11 (Openness is a Local Condition). Let X be a top. space with open cover {Ui}; then Y ⊆ X
is open iff Y ∩ Ui is open in Ui for each i.

Proof. If Y is open, then by definition of the subspace topology Y ∩ Ui is open for each i. On the other
hand, if Y ∩ Ui is open in Ui for each i, then Y ∩ Ui is open in X, whence Y =

⋃
i Y ∩ Ui is open.

However, what might be less obvious is that closedness is also a local condition.

Lemma 6.12 (Closedness is a Local Condition). Let X be a top. space with open cover {Ui}; then Y ⊆ X
is closed iff Y ∩ Ui is closed in Ui for each i.

Proof. Suppose that Y ∩Ui is closed in Ui for each i. This is equivalent to Ui \ (Yi ∩Ui) being open in Ui for
each i. Yet Ui \ (Y ∩Ui) = (X \Y )∩Ui, so we have that (X \Y )∩Ui is open. But then (X \Y )∩Ui = V ∩Ui
for some open V ⊆ X. Yet the latter is the intersection of two open sets of X and hence open, so (X \Y )∩Ui
is open in X. Then X \ Y =

⋃
i(X \ Y ) ∩ Ui is open in X as the union of open sets, so Y is closed.
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B.2 Irreducibility and Noetherian Spaces

This section is filled with facts concerning Definition 1.13 and Definition 1.17.

Proposition 6.13. A topological space X is irreducible if and only if any two nonempty open sets of X have
nonempty intersection. That is, X is irreducible if and only if any nonempty open set of X is dense in X.

Proof. The first statement follows immediately from the definition by taking complements. For the second,
a set U ⊆ X is said to be dense if U = X. This is equivalent to the statement that the only closed set
containing U is X itself, which by taking complements is equivalent to the statement that the only open set
not intersecting U is the empty set. Hence the second statement is equivalent to the first and we’re done.

Proposition 6.14. Suppose that X is irreducible. Then any nonempty open subset of X is irreducible.

Proof. Suppose that U is a nonempty open subset of X. In light of Proposition 6.13, it suffices to show
that any two nonempty open sets in U have nonempty intersection. Yet any (nonempty) open set in U is a
(nonempty) open set in X, so any two nonempty open sets contained in U have nonempty intersection by
considering them as open subsets of X.

Proposition 6.15. Suppose that Y ⊆ X is irreducible. Then Y ⊆ X is irreducible.

Proof. Suppose that Y is not irreducible. Then there exist closed sets V1, V2 of X such that (V1 ∩Y )∪ (V2 ∩
Y ) = Y but V1, V2 ̸⊇ Y . But then, by definition of the closure, V1, V2 ̸⊇ Y , whereas

(V1 ∩ Y ) ∪ (V2 ∩ Y ) = (V1 ∩ Y ∩ Y ) ∪ (V2 ∩ Y ∩ Y ) = ((V1 ∩ Y ) ∪ (V2 ∩ Y )) ∩ Y = Y ∩ Y = Y.

Hence Y is not irreducible. Taking the contrapositive yields the desired result.

Lemma 6.16. Suppose that X is a topological space with an open cover of irreducible sets {Ui}. Suppose
further that the intersection of any nonempty Ui, Uj is nonempty. Then X is irreducible.

Proof. Suppose that V1 and V2 are two nonempty open sets in X. Now, there exist i, j such that Ui ∩ V1
and Uj ∩ V2 are both nonempty (since the Ui cover X). Then, since Ui ∩ V1 and Ui ∩ Uj are non-empty
open subsets of Ui, by irreducibility they have nonempty intersection. But then Ui ∩ Uj ∩ V1 and Uj ∩ V2
are nonempty open subsets of Uj , so by irreducibility they have nonempty intersection. But then V1 and V2
have nonempty intersection. Hence X is indeed irreducible.

Proposition 6.17. Suppose that X is a topological space which is irreducible and Hausdorff. Then X is the
one-point space. In particular, any affine variety which is Hausdorff consists of a single point.

Proof. Suppose that X has two distinct points x and y. Then by the Hausdorff condition, they have disjoint
neighborhoods; yet any two nonempty open sets of an irreducible space are not disjoint, so this is impossible.
This contradiction proves that X must be the one-point space.

Proposition 6.18. Suppose that X is a topological space which is Noetherian and Hausdorff. Then X is
finite and has the discrete topology. In particular, any affine algebraic set which is Hausdorff is a finite
collection of points with the discrete topology.

Proof. By Proposition 1.20, X can be expressed as the finite union of irreducible closed subsets Yi. Each
of these closed subsets are Hausdorff as the subset of a Hausdorff space, so by Proposition 6.17 they are a
single point. Hence X is a finite union of closed points (so it also has the discrete topology), as desired.

Proposition 6.19. The following conditions are equivalent for a topological space X.

(i) X is Noetherian; that is, X satisfies the descending chain condition for closed subsets.

(ii) X satisfies the ascending chain condition for open subsets.

(iii) Any nonempty family of closed subsets of X has a minimal element.

(iv) Any nonempty family of open subsets of X has a maximal element.
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Proof. We prove this theorem using a cycle of equivalences:

1: (i) implies (iii).
Firstly, suppose X is a Noetherian topological space and F is a nonempty family of closed subsets of X
with no minimal element. Take Y1 ∈ F . Since F has no minimal element, there must exist Y2 ⊊ Y1.
Similarly, for each i, there must exist Yi+1 ⊊ Yi, else Yi is a minimal element. Therefore, we get a descend-
ing chain of closed subsets Y1 ⊋ Y2 ⊋ · · · which does not stabilize, a contradiction. Therefore F cannot exist.

2: (iii) implies (ii).
Suppose that X is a topological space such that every nonempty family F of closed subsets of X has a
minimal element. Take an ascending chain Y1 ⊆ Y2 ⊆ · · · of open sets. Define Zi = X \ Yi for each i; then
{Zi} is a family of closed subsets of X. But then by hypothesis this family has a minimal element, say Zn.
Now, Yn ⊆ Yn+1 ⊆ · · · , so Zn ⊇ Zn+1 ⊆ · · · . Hence the minimality condition forces Zn = Zn+1 = · · · ,
forcing Yn = Yn+1 = · · · , as desired.

3: (ii) implies (iv).
Suppose X satisfies the ascending chain condition for open subsets and F is a nonempty family of open
subsets of X which has no maximal element. Take Y1 ∈ F . Since F has no maximal element, there exists
Y2 ⊋ Y1. Similarly, for each i, there exists Yi+1 ⊋ Yi. Therefore, we get an ascending chain of open subsets
Y1 ⊊ Y2 ⊊ · · · which does not stabilize, a contradiction. Therefore F cannot exist.

4: (iv) implies (i).
Suppose that X is a topological space such that every nonempty family F of open subsets of X has a
maximal element. Take a descending chain Y1 ⊇ Y2 ⊇ · · · of closed sets. Define Zi = X \ Yi for each i;
then {Zi} is a family of open subsets of X. But then by hypothesis this family has a maximal element, say
Zn. Now, Yn ⊇ Yn+1 ⊇ · · · , so Zn ⊆ Zn+1 ⊆ · · · . But then the maximal forces Zn = Zn+1 = · · · , forcing
Yn = Yn+1 = · · · , as desired.

Hence we are done.

Proposition 6.20. Any Noetherian space X is quasicompact (that is, any open cover has a finite subcover).

Proof. Let U = {Uλ}λ∈Λ be an open cover of X. Then, form the family

F = {X | X is a finite union of elements in U} .

This family must have a maximal element by Proposition 6.19. This maximal element has the form Uλ1 ∪
· · · ∪ Uλn . Furthermore, we must have Uλ1 ∪ · · · ∪ Uλn = X, since if there exists x ∈ X not contained in
Uλ1

∪ · · · ∪ Uλn
, then we may choose Uλn+1

covering x (since U covers all of X) and then Uλ1
∪ · · · ∪ Uλn+1

would be an element of F strictly containing Uλ1
∪ · · · ∪ Uλn

, a contradiction.

Proposition 6.21. Any subset of a Noetherian space is Noetherian when given the subspace topology.

Proof. Suppose that X is a Noetherian topological space with subspace Y . Take a descending chain of closed
sets Y1 ⊇ Y ⊇ · · · in Y . Then, by definition of the subspace topology, for each i there exists Xi (closed
in X) such that Xi ∩ Y = Yi. This induces a descending chain of closed sets X1 ⊇ X2 ⊇ · · · in X, which
stabilizes at Xn by hypothesis. Yet if Xn = Xn+1 = · · · , then clearly also Yn = Yn+1 = · · · , so the chain in
Y stabilizes and we are done.

Proposition 6.22. A topological space is noetherian iff every open subset is quasicompact.

Proof. Suppose that X is a Noetherian topological space. Suppose, for the sake of contradiction, that there
exists an open subset U which is not quasicompact. Then there exists an open cover {Ui}i∈I of U which has
no finite subcover. Define V1 = Ui1 for some i. Then, since {Ui}i∈I has no finite subcover, there exists some
Ui2 such that Ui2 ̸⊆ V1. Define V2 = V1 ∪Ui2 , so that V2 ⊋ V1. More generally, because {Ui}i∈I has no finite
subcover, we can find some Uin+1 such that Uin+1 ̸⊆ Vn, and define Vn+1 = Vn ∪ Uin+1 , so that Vn+1 ⊋ Vn.
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This gives a strictly ascending chain V1 ⊊ V2 ⊊ V3 ⊊ · · · , contradicting the fact that X is Noetherian.

Now suppose that X is a Noetherian topological space. Let U be an open subset of X with finite subcover
{Ui}i∈I . Then let S be the set of all finite unions of elements in U . Because X is Noetherian, any chain of
elements in S has an upper bound, so by Zorn’s Lemma there is a maximal elementM in S . But ifM ̸= U ,
then because the {Ui} cover U we may choose Uj such thatM ∪Uj ⊋M , contradicting the maximality ofM .
Hence we must have M = U , so there is a finite subcover of {Ui}i∈I , so U is quasicompact, as desired.

B.3 Dimension of Topological Spaces

This section is filled with facts concerning Definition 1.21.

Proposition 6.23. Suppose that X is a topological space with subset Y . Then dimY ≤ dimX.

Proof. Suppose that Y is a subset of a topological space X. Suppose there exists a chain of closed irreducible
subsets of Y , say

Z0 ⊊ Z1 ⊊ · · · ⊊ Zn. (1)

Now, each Zi is also irreducible in X by definition. Furthermore, by Proposition 6.15, Zi is also irreducible.
Finally, we must show that Z0 ⊆ Z1 ⊆ · · · ⊆ Zn is a strictly ascending chain. For this, recall (from basic
topology, say Munkres’ Theorem 17.4 or Theorem 13 in my personal notes here) that if Y is a subspace of
X and S ⊆ Y , then the closure of S in Y is the intersection of the closure of S in X and Y . In our case,
Zi = Zi ∩Y . Hence we cannot have Zi = Zi+1, since then we would have Zi = Zi+1, a contradiction. Hence
Z0 ⊊ Z1 ⊊ · · · ⊊ Zn is a strictly ascending chain.

Hence any strictly ascending chain of closed irreducible subsets of Y induces a strictly ascending chain of
closed irreducible subsets ofX with equal length. Yet this implies that the supremum of all the lengths of such
chains in X is bounded below by the supremum of all the lengths of such chains in Y , so dimY ≤ dimX.

Proposition 6.24. If X is a topological space which is covered by a family of open subsets {Ui}, then
dimX = supdimUi.

Proof. By Proposition 6.23, plainly we have dimX ≥ dimUi for each i. This implies, by properties of the
supremum, that dimX ≥ sup dimUi. For the other direction, suppose that X has a strict chain of closed
irreducible subsets Z0 ⊊ Z1 ⊊ · · · ⊊ Zn. Now, Z0 is nonempty since it is irreducible, so there exists some
x0 ∈ Z0. x0 is contained in U for some U ∈ {Ui}, by definition of an open cover.

I claim that Z0 ∩ U ⊆ · · · ⊆ Zn ∩ U is a strict chain of closed irreducible subsets of U . The fact that each
Zi ∩ U is closed is a direct consequence of the definition of the subspace topology. Next, we will show that
each Zi ∩ U is irreducible. For this, suppose that A,B are proper nonempty closed subsets of U satisfying
A ∪ B = Zi ∩ U . Yet then A, B, and Zi \ U are three proper nonempty closed subsets of U whose union is
Zi. But this contradicts the fact that Zi is irreducible, so indeed Zi ∩ U must be irreducible.

Similarly, the chain is strict; we cannot have Zi ∩ U = Zi+1 ∩ U , since then Zi and U \ Zi+1 are closed and
nonempty proper subsets of Zi covering Zi, which would contradict the fact that Zi is irreducible. Hence
any strict chain of closed irreducible subsets of X induces a strict chain of closed irreducible subsets of some
U ∈ {Ui} of the same length, so dimX ≤ sup dimUi and indeed dimX = supdimUi, as desired.

Proposition 6.25. If Y is a closed subset of an irreducible finite-dimensional topological space X such that
dimY = dimX, then Y = X.

Proof. Suppose, for the sake of contradiction, that X is a finite-dimensional irreducible topological space
with a closed subset Y such that dimY = dimX = n but Y ̸= X. Then there exists a chain of subsets
Z0 ⊊ Z1 ⊊ · · · ⊊ Zn, irreducible and closed in Y . But each Zi is plainly irreducible in X. Furthermore, each
Zi is closed in X as the intersection of a closed set in X with the closed set Y .

50

https://web.stanford.edu/~truax/notes/Topology.pdf


Yet X is irreducible, closed in itself, and strictly larger than each Zi (since it is strictly larger than Y and
Y contains each Zi) so we have a strict chain of closed subsets Z0 ⊊ Z1 ⊊ · · · ⊊ Zn ⊊ X, implying the
dimension of dimX is at least n+ 1, a contradiction.

B.4 Topology of Affine Schemes

Lemma 6.26. A closed subset V of a quasicompact topological space X is quasicompact.

Proof. Let {Ui} be an open covering of V . Then by definition of the subspace topology, there exist U ′
i

such that Ui = U ′
i ∩ V . Then {U ′

i} and (X \ V ) form an open covering of X, so there is a finite subcover
(X \ V ), U ′

1, . . . , U
′
n of X. But then U1 = U ′

1 ∩ V, . . . , Un = U ′
n ∩ V is a finite subcover of V , as desired.

Proposition 6.27. Suppose that X is a topological space with a cover U1, . . . , Un such that Ui is a quasi-
compact space for each i. Then X is quasicompact.

Proof. Take an open cover {Vj} of X. For each fixed i, {Vj ∩Ui} is an open cover of Ui, and therefore it has
a finite subcover. This lifts to a finite subset of {Vj} covering Ui. But there are only finitely many Ui, and
they cover X, so we get a finite subset of {Vj} covering X.

Proposition 6.28. If X is an affine scheme, sp(X) is quasicompact, but not in general Noetherian.

Proof. Suppose thatX = SpecA and {Ui}i∈I is an open cover of sp(X). Because the basic affine opens form a
basis for the topology on sp(X), for each i ∈ I, Ui ⊇ D(ai) for some ai ∈ A. Now, notice that

⋃
i∈I D(ai) = X

is equivalent to
⋂
i∈I X \D(ai) =

⋂
i∈I V ((ai)) = ∅. Yet notice that

⋂
i∈I V ((ai)) = V

(∑
i∈I(ai)

)
. Yet the

only ideal which does not contain any prime ideals is A itself, so we must have A =
∑
i∈I(ai). In particular,

by definition there must exist a1, . . . , an such that 1 = a1 + · · ·+ an.

But then D(a1), . . . , D(an) covers X. Indeed,
⋂n
j=1 V ((aj)) = V ((a1) + · · ·+ (an)) = V (A) = ∅, so

n⋃
j=1

D(ai) = X \
n⋂
j=1

(X \D(ai)) = X \
n⋂
j=1

V ((ai)) = X \∅ = X.

Yet recall that there exists U1 ⊇ D(a1), . . . , Un ⊇ D(an) by our choice of the ai. Hence U1, . . . , Un is the
desired finite subcover of {Ui}i∈I .

Now we will exhibit an example of a non-Noetherian affine scheme. Let A = k[x1, x2, . . . ] for some field k.
Then define Vn =

⋂n
i=1 V ((xi)). Clearly, this is an descending chain of closed sets, but I claim that it is

strictly descending. To see why, notice that (xi) ⊆ (x1, . . . , xn) for i = 1, . . . , n, so (x1, . . . , xn) ∈ Vn. Yet
(xn+1) ̸⊆ (x1, . . . , xn), so (x1, . . . , xn) ̸∈ Vn+1. Hence Vn+1 is a proper subset of Vn, so V1, V2, . . . is a strictly
descending chain of closed subsets, which proves that SpecA cannot be Noetherian, as desired.

Proposition 6.29. If A is a Noetherian ring, then sp(SpecA) is a Noetherian topological space.

Proof. Let V1 ⊇ V2 ⊇ · · · be a descending chain of closed sets. Then there exist ideals I1, I2, . . . such that
Vi = V (Ii) for each i. Notice that V (Ii) ⊇ V (Ii+1) implies Ii ⊆ Ii+1, so by the Noetherian condition there
must exist some N such that IN = IN+1 = · · · . But then obviously VN = VN+1 = · · · , as desired.

Lemma 6.30. Suppose A is a ring such that SpecA is irreducible. Then the nilradical N of A is prime.

Proof. Suppose f and g are two non-nilpotent elements of A. Because the nilradical is precisely the inter-
section of all prime ideals of A, there exist prime ideals p1 not containing f and p2 not containing g. Then
p1 ∈ D((f)) and p2 ∈ D((g)). Since D((f)) and D((g)) are nonempty opens, by irreducibility D((f))∩D((g))
must be nonempty. But D((f))∩D((g)) = D((fg)), and if D((fg)) is nonempty then fg cannot be nilpotent.
Hence f, g ̸∈ N ⇒ fg ̸∈ N , so the nilradical is prime.
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B.5 Topology of General Schemes and Zariski Spaces

Definition 6.31 (Generic Point). If X is a topological space, and Z an irreducible closed subset of X, a
generic point for Z is a point ζ such that Z = {ζ}.

Definition 6.32 (Zariski Space). A topological space X is a Zariski space if it is Noetherian and every
(nonempty) closed irreducible subset has a unique generic point.

Definition 6.33 (Specialization and Generization). If x0, x1 are points of a topological space X, and if
x0 ∈ {x1}, then we say that x1 specializes to x0, written x1 ⇝ x0. We also say x0 is a specialization of x1,
or that x1 is a generization of x0.

Lemma 6.34. If S ⊆ X is stable under generization (contains every generization of any of its points), then
X \ S is stable under specialization (contains every specialization of any of its points).

Proof. Suppose S ⊆ X is stable under generization. Now suppose that x0, x1 in X are such that x0 ∈ {x1}.
By definition, if x0 ∈ S, then x1 ∈ S. Then, by contraposition, if x1 ̸∈ S, then x0 ̸∈ S; that is, if x1 ∈ X \S is
such that x0 ∈ {x1}, then x0 ∈ X \S. By definition, this means that X \S is stable under specialization.

Theorem 6.35 (Properties of Zariski Spaces). Suppose X is a Zariski space. Then:

(a) Any minimal nonempty closed subset of a Zariski space consists of one point, called a closed point.

(b) A Zariski space X satisfies the T0 axiom: given any two distinct points of X, there is an open set
containing one but not the other.

(c) If X is also irreducible, then its generic point is contained in every nonempty open subset of X.

(d) The minimal points, for the partial ordering determined by x1 ≥ x0 if x1 ⇝ x0, are the closed points,
and the maximal points are the generic points of the irreducible components of X.

(e) Closed subsets are stable under specialization. Similarly, open subsets are stable under generization.

Proof.
(a): Suppose that V is a minimal nonempty closed subset of a Zariski space X; by assumption, there exists
a unique generic point v ∈ V . Suppose, for the sake of contradiction, that V is not a singleton. Then, choose
any w ∈ V \ {v}; by uniqueness w is not a generic point so {w} ⊊ V , contradicting the fact that V is a
minimal nonempty closed subset of X. Hence V must be a singleton, as desired.

(b): Let x and y be two distinct points in a Zariski space X. Then {x} cannot equal {y}, because otherwise
V = {x} would have two generic points, x and y, violating uniqueness. Therefore, we may assume with-
out loss of generality that {x} ̸⊆ {y}. Then, in particular, x ̸∈ {y}; by definition, this implies that there
exists a closed set V containing y but not x. But then X \V is an open set containing x but not y, as desired.

(c): Suppose that X is an irreducible Zariski space. Now, there exists a unique point x ∈ X with {x} = X.
That is, the smallest closed set containing x is X. Now assume that U is a nonempty open set of X not
containing x. Then X \U is a closed set containing x which is strictly contained in X, contradicting the fact
that the smallest closed set containing x is X. Hence every nonempty open set of X contains x.

(d): Let X be a Zariski space. Then,

(1) The minimal points, for the partial ordering determined by x1 > x0 if x1 ⇝ x0, are the closed points.
Proof: Suppose that x is a closed point. Then x is minimal, as if y is a point with x ≥ y, then y ∈ {x} = {x},
so y = x. On the other hand, suppose x is minimal. Then {x} = {x}, because if not, then any y ̸∈ {x} \ {x}
is such that x > y; namely, y ∈ {x} but x ̸∈ {y} (because {y} must be a strict subset of {x} and {x} is the
smallest closed set containing x). Hence the result is shown in both directions.

(2) The maximal points are the generic points of the irreducible components of X.
Proof: Suppose that x is a generic point of an irreducible component V of X. Now suppose y is a point
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contained with y ≥ x. Then x ∈ {y}, which implies V = {x} ⊆ {y}. Now y is contained in an irreducible
component W ; since W is a closed set containing y, {y} ⊆ W . Since V is an irreducible component, this
implies V =W , so {x} = {y}, so x = y and x is maximal. On the other hand, suppose that x is a maximal
point contained in an irreducible component V . Then there exists a generic point v of V , and since x ∈ {v},
we have x ≤ v whence x = v by maximality. Hence x is the generic point of an irreducible component of X.

(e): Let X be a Zariski space. Then,

(1) A closed subset contains every specialization of any of its points.
Proof: Suppose that V is a closed subset of X, and suppose that v ∈ V is a point. Then a specialization
of v is a point w such that w ∈ {v}. But since {v} is the smallest closed set containing v, and V contains v,
we must have {v} ⊆ V . Hence w ∈ {v} implies w ∈ V , so V contains every specialization of v, as desired.

(2) An open subset contains every generization of any of its points.
Proof: Suppose that U is an open subset of X, and suppose that u ∈ U is a point. Then a generization of
u is a point v such that u ∈ {v}. Suppose that v ̸∈ U . Then X \ U is a closed set containing v, so since {v}
is the smallest closed set containing v, {v} ⊆ X \U . In summary, by contraposition, if {v} intersects U then
v ∈ U . Yet {v} and U both contain u, so v ∈ U . Hence U contains every generization of u, as desired.

Theorem 6.36. If X is a scheme, every (nonempty) irreducible closed subset has a unique generic point.

Suppose that Z is an irreducible closed subset of a scheme X. By the axioms of a scheme, we may select a
nonempty affine open set U ⊆ Z. U is dense and irreducible in Z by Proposition 6.13 and Proposition 6.14.
Now suppose U = SpecA. It suffices to find a prime p ◁pr A such that p = SpecA = U in U , since then

(p) = U = Z in Z. Hence let us attempt to find a prime p ◁pr A such that p = SpecA. This is equivalent to
finding a prime ideal p such that any prime q ◁pr A contains p. The nilradical is contained in every prime
ideal, so it suffices to show that the nilradical is prime. Yet this is precisely Lemma 6.30.

We have shown the existence of a generic point, and will now show that this point is necessarily unique.
Suppose that ζ1 and ζ2 are two generic points of an irreducible closed subset Z. Let U be an affine neigh-
borhood of ζ1. Since ζ1 = ζ2, every open set containing ζ1 contains ζ2; hence U is also an affine neigborhood
of ζ2. By definition of affine, there exists an isomorphism of schemes ϕ : U → SpecA for some ring A. Then,
ζ2 ∈ ζ1 implies ϕ(ζ2) ∈ ϕ(ζ1) implies ϕ(ζ2) ∈ V (ϕ(ζ1)) implies ϕ(ζ2) ⊇ ϕ(ζ1). The reverse reasoning implies
that ϕ(ζ2) ⊆ ϕ(ζ1), so ϕ(ζ1) = ϕ(ζ2) whence ζ1 = ζ2, as desired.

Proposition 6.37. If X is a Noetherian scheme, then sp(X) is a Noetherian topological space.

Proof. Assume that X is a Noetherian scheme (Definition 2.74). This implies X is covered by a finite set of
open affine subschemes U1, . . . , Un where Ui = SpecAi for a Noetherian ring Ai. By Proposition 6.29, each
Ui is a Noetherian space. Now, suppose we have an infinite ascending chain of open sets V1 ⊆ V2 ⊆ V3 ⊆ · · · .
This gives us an infinite ascending chain of open sets V1 ∩ Ui ⊆ V2 ∩ Ui ⊆ V3 ∩ Ui ⊆ · · · within Ui; since
Ui is Noetherian, there must exist Ni such that VNi ∩ Ui = VNi+1 ∩ Ui = · · · for each i. But then define
N = max{N1, . . . , Nn}; here, we have VN = VN+1 = · · · since the Ui cover X. Therefore the chain stabilizes.
Hence sp(X) is indeed a Noetherian topological space, as desired.

Corollary 6.37.1. If X is a Noetherian scheme, then sp(X) is a Zariski space.

B.6 Constructible Subsets and Chevalley’s Theorem

Definition 6.38 (Constructible Subset). Let X be a topological space. A constructible subset of X is a
subset which belongs to the smallest family F of subsets such that (1) every open subset is in F, (2) a finite
intersection of elements of F is in F, and (3) the complement of an element of F is in F.

Definition 6.39 (Locally Closed). A subset of X is locally closed if it is in the intersection of an open subset
with a closed subset.

Theorem 6.40. A subset of X is constructible if and only if it can be written as a finite union of locally
closed subsets if and only if it can be written as a finite disjoint union of locally closed subsets.
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Proof. Let F be the family of constructible subsets, G be the family of subsets of X which can be written
as a finite union of locally closed subsets, and H be the family of subsets of X which can be written as a
finite disjoint union of locally closed subsets. We will show that F = G and G = H .

(1) F = G : To show thatG ⊆ F, first notice that the finite union of elements in F is in F. To see why, suppose
that S, T ∈ F. Then X\S,X\T ∈ F, whence (X\S)∩(X\T ) ∈ F, whence X\((X\S)∩(X\T )) = S∪T ∈ F.
This immediately implies that G ⊆ F. To see why, notice that any open or closed set is in F , so the inter-
section of an open subset with a closed subset is in F , so the finite union of any locally closed subsets is
constructible by our above reasoning that F is closed under finite unions. Hence G ⊆ F.

Conversely, we will show that F ⊆ G. To do this, because F is the smallest family of subsets which satisfy
the properties (1)-(3), it suffices to show that G satisfies (1)-(3). Now, plainly every open subset is in G,
since any open set U can be written as the locally closed subset U ∩ X. Similarly, the complement of an
element of G is in G. To see why, suppose that (U1 ∩ V1) ∪ · · · ∪ (Un ∩ Vn) is a finite union of locally closed
subsets (that is, the Ui are open and the Vi are closed). Then

X\((U1∩V1)∪· · ·∪(Un∩Vn)) = (X\(U1∩V1))∩· · ·∩(X\(Un∩Vn)) = ((X\U1)∪(X\V1))∩· · ·∩((X\Un)∪(X\Vn))

but notice that X \ Ui is closed and X \ Vi is open for each i, so by distributing and then grouping we
can express X \ ((U1 ∩ V1) ∪ · · · ∪ (Un ∩ Vn)) as a finite union of locally closed subsets. Finally, obviously
a finite union of elements of G is in G; combined with the complement property, this implies that a finite
intersection of elements of G is in G. Hence G satisfies (1)-(3), so F ⊆ G and we are done.

(2) G = H : Now, obviously H ⊆ G ; it suffices to argue the other direction: namely, that any finite union
of locally closed subsets can be rewritten as a finite disjoint union of locally closed subsets. For this, it
suffices to show that if U ∩ V and U ′ ∩ V ′ are two locally closed subsets (that is, U and U ′ are open, and V
and V ′ are closed) with possibly nonempty intersection, then (U ∩ V ) ∪ (U ′ ∩ V ′) can be written as a finite
disjoint union of locally closed subsets. Yet in fact we have

(U ∩ V ) ∪ (U ′ ∩ V ′) =(U ∩ V ∩ (X \ U ′) ∩ (X \ V ′)) ∪ (U ∩ V ∩ (X \ U ′) ∩ V ′) ∪ (U ∩ V ∩ U ′ ∩ (X \ V ′))∪
(U ∩ V ∩ U ′ ∩ V ′) ∪ (U ∩ (X \ V ) ∩ U ′ ∩ V ′) ∪ ((X \ U) ∩ V ∩ U ′ ∩ V ′)∪
((X \ U) ∩ (X \ V ) ∩ U ′ ∩ V ′).

and each of these subsets are plainly disjoint, and by grouping one may show that each of these are locally
closed subsets. Hence G ⊆ H , so G = H .

Proposition 6.41. A constructible subset of an irreducible Zariski space is dense if and only if it contains
the generic point. Furthermore, in that case it contains a nonempty open subset.

Proof. Suppose that S is a constructible subset of an irreducible Zariski space X. Let x be the generic point
of X. Now, if x ∈ S, then S is obviously dense as S ⊇ {x} = X. On the other hand, suppose that S is
dense; that is, S = X. Now, write S as a finite union of locally closed subsets (U1 ∩ V1) ∪ · · · ∪ (Un ∩ Vn);
we may assume that the Ui are nonempty for each i. Now, V1 ∪ · · · ∪ Vn contains S and is closed, so it must
contain S = X. Hence V1 ∪ · · · ∪ Vn = X. By irreduciblity, this implies that X = Vi for some i; without loss
of generality, assume X = V1. But then S = U1 ∪ (U2 ∩ V2)∪ · · · ∪ (Un ∩ Vn). Hence S contains a nonempty
open set U1, which by Theorem 6.35(c) contains the generic point x of X. Hence S contains a nonempty
open set U1 and the generic point x, completing both parts of the question.

Proposition 6.42. Suppose that X is a Zariski space. A subset S of X is closed if and only if it is
constructible and stable under specialization. Similarly, a subset T of X if and only if it is constructible and
stable under generization.

Proof. Firstly, notice that a closed subset S of X is plainly constructible using axiom (1) and (3), and
recall that it is stable under specialization by Theorem 6.35(e). Hence assume that S is a constructible
subset which is stable under specialization. Then, we can write S as a finite union of locally closed subsets
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(U1 ∩ V1) ∪ · · · ∪ (Un ∩ Vn) (as usual, the Ui are open and the Vi are closed).

Now, as a Zariski space, X is Noetherian, so any subspace of X is also Noetherian by Proposition 6.21.
Recall that any Noetherian space has finitely many irreducible components. Therefore, by splitting each Vi
up into irreducible components Cij , and ignoring the ones that have empty intersection with Ui, we may
assume S = (U1 ∩ V ′

1)∪ · · · ∪ (Un ∩ V ′
n) for open Ui and irreducible closed V ′

i such that Ui ∩ V ′
i is nonempty

for each i (key here is the fact that an irreducible component of Vi is also closed and irreducible in X).

Now, I claim that in fact S = V ′
1 ∪ · · · ∪ V ′

n and hence that S is closed. To see why this holds, notice that
clearly S ⊆ V ′

1 ∪ · · · ∪ V ′
n. On the other hand, notice that S contains Ui ∩ V ′

i , which is a nonempty open
subset of V ′

i , and therefore contains the generic point vi of V ′
i by II.3.17(d). But then since S is closed

under specialization, S contains every point in {vi} = V ′
i . Hence S contains V ′

i for each i, so S contains
V ′
1 ∪ · · · ∪ V ′

n and we have S = V ′
1 ∪ · · · ∪ V ′

n, as desired.

For the second part of this result, notice that an open subset S is plainly constructible using axiom (1),
and recall that it is stable under generization by Theorem 6.35(e). For the converse, assume that S is a
constructible subset which is stable under generization. Then X \S is a constructible subset which is stable
under specialization, so it is closed by the above reasoning, so S is open.

Proposition 6.43. If f : X → Y is a continuous map of Zariski spaces, then the inverse image of any
constructible subset of Y is a constructible subset of X.

Proof. Suppose that (U1 ∩ V1) ∪ · · · ∪ (Un ∩ Vn) is a finite disjoint union of locally closed subsets. Then

f−1 ((U1 ∩ V1) ∪ · · · ∪ (Un ∩ Vn)) = f−1(U1 ∩ V1) ∪ · · · ∪ f−1(Un ∩ Vn)
= (f−1(U1) ∩ f−1(V1)) ∪ · · · ∪ (f−1(Un) ∩ f−1(Vn)).

But f−1(Ui) is open and f−1(Vi) is closed by continuity, so (f−1(U1)∩ f−1(V1))∪ · · · ∪ (f−1(Un)∩ f−1(Vn))
is indeed constructible. Hence we are done.

We have been building up all this machinery for the proof of the following theorem:

Theorem 6.44 (Chevalley’s Theorem). Let Y be a Noetherian scheme and f : X → Y be a morphism of
finite type. Then the image of any constructible subset of X is a constructible subset of Y . In particular,
f(X), which need not be either open or closed, is a constructible subset of Y .

Firstly, we need a special tool: Noetherian induction. We will state the result, but will not include a proof
as it is simple (it is a special case of the general method of induction on well-founded sets).

Theorem 6.45 (Noetherian Induction). Let X be a Noetherian topological space and let P be a property
of closed subsets of X. Suppose that if Y ⊆ X is closed, then if P holds for every proper closed subset of Y ,
then P holds for Y . In particular, P must hold for the empty set by vacuous truth. Then P holds for X.

Secondly, we need an algebraic lemma from Atiyah-Macdonald:

Lemma 6.46. Let A ⊆ B be an inclusion of Noetherian integral domains such that B is a finitely-generated
A-algebra. Then, given any nonzero b ∈ B, there is a nonzero element a ∈ A such that the following property
holds: if φ : A → K is any homomorphism of A to an algebraically closed field K such that φ(a) ̸= 0, then
φ extends to a homomorphism φ′ of B into K such that φ′(b) ̸= 0.

Proof. Let g be the number of generators of B over A; we prove this result by induction on g. Consider the
base case of g = 1, so that there exists x ∈ B such that A[x] = B. In particular, any nonzero b ∈ B can be
expressed as anx

n+ · · ·+a1x+a0 for some n ≥ 0 and some an, . . . , a0 ∈ A. Now, there are two possibilities:

1. x is transcendental over A. In this case, I claim that any homomorphism φ : A→ K such that φ(an) ̸= 0
can be extended to a homomorphism φ′ : B → K with φ′(b) ̸= 0. It suffices to choose φ′(x) = y such
that φ(an)y

n + · · · + φ(a1)y + φ(a0) ̸= 0. Yet since φ(an) ̸= 0, φ(an)y
n + · · · + φ(a1)y + φ(a0) is a

degree n polynomial, so it has at most n roots. Since K is algebraically closed, it is infinite, so we may
choose any of the infinite not-roots of any

n + · · ·+ a1y + a0 to be y. The result follows.
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2. x is algebraic over A. Then x satisfies a′mx
m+ a′m−1x

m−1 + · · ·+ a′1x+ a′0 = 0 for some m and a′i ∈ A.
Similarly, since x is algebraic over A, Frac(B) is algebraic over A, so in particular b−1 is algebraic over
A. Hence a′′k(b

−1)k + a′′k−1(b
−1)k−1 + · · ·+ a′′1(b

−1) + a′′0 = 0 for some k and a′′i ∈ A.

Now let a = a′ma
′′
k . Choose any homomorphism f : A → Ω such that f(a) ̸= 0. Then φ can be

extended to a map Aa → Ω given by a−1 7→ f(a)−1 and then to a map R→ Ω, where R is a valuation
ring containing Aa (via the general result on extending homomorphisms to valuation rings). Then x
is integral over Aa (because a′m is invertible in Aa), so x is in R, so B ⊆ R. Therefore we may restrict
the map R→ Ω to a map φ′ : B → Ω. Now b−1 is integral over Aa (because a′′k is invertible in Aa), so
b−1 is in R. Hence b is a unit in R, which forces φ′(b) = φ(b) ̸= 0. The result follows.

Now, the result follows easily by induction; we progressively extend the homomorphism to an A-subalgebra
of B which uses one more generator each time until we have any finite number of generators.

Now we can begin the proof of Chevalley’s Theorem:

Proof. First, there are five reductions to be made:

1. To reduce to showing that f(X) itself is constructible, restrict to the morphism f |S : S → Y .

2. To reduce to the case where X and Y are affine, suppose that {Ui} is a (finite, by Noetherianness)
affine open cover of Y . Then suppose that, for each i, {Vij} is a (finite, since f is of finite type) affine
open cover of f−1(Ui). If the morphism f |Vij

: Vij → Ui has f(Vij) constructible for all i, j, then
f(X) =

⋃
i,j f(Vij) is constructible as it is a finite union of constructible sets. Yet f |Vij

maps into the
affine scheme Ui, so we may assume that both X and Y are affine.

3. Similarly, suppose that {Vi} are the irreducible components of Y . Then, suppose that, for each i, {Wij}
are the irreducible components of f−1(Vi). If the morphism f |Wij

:Wij → Vi has f(Wij) constructible
for all i, j, then f(X) =

⋃
i,j f(Wij) is constructible. Yet f |Wij

maps into the irreducible component
Vi, so we may assume that both X and Y are irreducible. Since X and Xred are homeomorphic for
all schemes X, we can plainly take X and Y to be reduced. Hence we may assume that X and Y are
irreducible and reduced; that is, that they are integral.

4. X is Noetherian (we are not even reducing cases, but stating a consequence of our above work), as the
morphism of finite type Spec(X) → Spec(Y ) gives a finite ring homomorphism Y → X, and since Y
is Noetherian, X is Noetherian as a finitely-generated algebra over a Noetherian ring.

5. Now, we will reduce to the case where f : X → Y is dominant. To do this, assume that we have shown
the result for every dominant morphism. Now, for any morphism f : X → Y where X and Y are affine
integral notherian schemes, we have an induced morphism f ′ : X → f(X). f ′ is dominant, so f ′(X)
is constructible by assumption. By Theorem 6.40, f ′(X) can be expressed as a finite disjoint union of
locally closed subsets (U1 ∩ V1) ∪ · · · ∪ (Un ∩ Vn). Note that the Ui are open and the Vi are closed in
f(X), but since f(X) is closed, the Vi are still closed in X, and the Ui can be expressed as U ′

i ∩ f(X)
for some U ′

i open in X. Hence f ′(X) = f(X) = (U1∩ (V1∩f(X)))∪· · ·∪ (Un∩ (Vn∩f(X))), so indeed
f(X) is constructible. This shows that it suffices to prove the result for dominant f .

Therefore, we have reduced to showing that f(X) itself is constructible, in the case where X = SpecB and
Y = SpecA are affine, integral noetherian schemes, and f is a dominant morphism.

Next, we will show that f(X) contains a nonempty open subset of Y . The morphism f : X → Y of finite
type corresponds to a morphism f ′ : A → B which is an injection (since f is dominant) making B into a
finitely-generated A-algebra. By our reductions in (a), A and B are Noetherian integral domains. Now, to
show that f(X) contains a nonempty open subset of Y , choose b = 1. Then there exists some nonzero a ∈ A
with the property described in Lemma 6.46.

It suffices to show that f(X) contains D(a), since D(a) is nonempty (since a ̸= 0) and open. Now suppose
that p ∈ D(a); that is, p does not contain a. Then the natural map φ : A→ A/p ↪→ Frac(A/p) ↪→ Frac(A/p)
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sends a to a nonzero element of the algebraically closed field Frac(A/p). Hence we have an extended map
φ : B → Frac(A/p) sending 1 to itself. Then kerφ is a prime ideal of φ (notably it is not all of B since φ(1)
is nonzero) which contains p, so p = f ′−1(kerφ) whence f(kerφ) = p so p ∈ f(X), as desired.

Finally, we can conclude the result using Noetherian induction. Say that P holds for a closed subset Y
of X if f(Y ) is constructible. Plainly, P holds for the empty set. Now assume that P holds for every
proper closed subset of Y ; it suffices to prove that P holds for Y . Now, obviously if Y is reducible, then
Y can be written as the union of two constructible sets, so we are done. Therefore, we may assume that Y
is irreducible. Now, consider f |Y : Y → f(Y ); by (b), there is a nonempty open set U ⊆ f(Y ). Now take
P = (f |Y )−1(U) ⊆ Y ; this is open by continuity (and obviously nonempty). Hence Y \ P is a proper closed
subset of Y , so f(Y \ P ) is constructible, but f(Y ) = f(Y \ P )∪U so f(Y ) is also constructible, as desired.
Therefore we are done, and Chevalley’s Theorem is proven.
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